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Abstract

This paper develops a unified model to analyze the competitive
dynamics of large language model (LLM) development, incorporat-
ing productivity growth, proprietary competition, open-sourcing ini-
tiatives, and community diversity. We introduce a new model that
captures the key roles of computing power, algorithms, and data as
scarce resources, and incorporates Nash bargaining between firms and
resource providers, separating equilibria based on firm size, and the en-
dogenous choice of open-sourcing by companies. We show that open-
source models and communities can reduce duplicative investments
and resource waste caused by arms races, promote diversity and in-
clusivity in the digital ecosystem, and foster long-tail economics. We
discuss the competition between China and the US in LLM develop-
ment and highlight the parallels between open-sourcing in LLMs and
decentralized finance (DeFi). Our model provides insights into in-
dustry standards, international competition, and the concentration of
power and resources in the LLM industry, offering guidance for policy-
makers, researchers, and practitioners navigating this rapidly evolving
landscape.

1 Introduction

Large models, which means models beyond large language models, including
multimodular models, have the potential to improve productivities in all as-
pects of human economic activities and all kinds of industries. The battle
of large models has been hot across the globe. The development of large
models is of relevance to national competiveness. Due to the unique features
of large models, including externatilities (positive externatilities such as im-
proving productivities, or negative externatiliteis such as labor replacement
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or sysmetic risks), non-rivalry, data-reinforcing effects, privacy concerns. We
are facing unprecedented issues with the coming of large models. We need
an economic framework to understand the battle of hundreds of large models
to inform the optimal policies for the welfare of human beings.

The current landscape of large models consist of priprietary models such
as chatgpt and also open-source models like Llama by Meta. Proprietary
models can extract economic rent from the gap between the productivity
their model and the most productive open-source model.

The scarce resources to make large models include computing power, al-
gorithms made by talents, and data (open-source data and consumer data).
The productivities of large models follow possion jump processes, with in-
tensity proportional to computing power algo talents, data devoted to the
model. Many firms of large models may have differnet starting points of
the producitivity (can easily measured by their score in multiple tasks) of
their large model. In a world without open-source models, they invest their
resources to improve their own models, leading to arm races. And from the
perspective of the whole society, the resources invested in the relative low
states of productivities models are wasted, leading to suboptimal outcomes
of resource allocation in the society. In contrast, in a world with open-source
model with relatively high productivities, the firms with starting point lower
than that open-source model will optimally choose to innovate based on that
open-source models. The state-of-the-art open-source model serves a pow-
erful aggregator of the decentralized computing power, talents, and data, so
that these resources can be put together and innovate in a relatively promis-
ing direction given the current information environment (the state of pro-
ducitivity of the open-source model), this leads to more efficient resource
allocation in the society. Also, the choice of making the model open-source
can be an endogenous choice of a firm, since make their model open-source
can attract more efforts in the route and increase the probabitliy of making
breakthourgh in their route of models (measure by the idensity of possion
jump). This may help close the gap between the open-source model and
the most productive proprietary model, and eventualy beneficial for the firm
making their model open-source.

Based on the data from huggingface, a popular open-source community
of large models, there have been about 700,000 open-source models. The
downloads of models follow a Zipf’s Law for Cities: An Explanation in Gabaix
[1999], meaning that the log regression of downloads on the rank of model is
close to -1. From this results, open-source communities of large models has
led to a diverse and inclusive ecosystem just like different cities. We have large
models like metropolitan New York City and also boutique models like small
town Ithaca with Cornell Unviersity. It is worth emphasizing the long-tail of
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models are non-trivial just like Ithaca is non-trivial with Cornell Unversity.
The likes of model even have a fatter tail, indicating diverse preferences on the
models. This results highlight that open-source models, enables communicty
mebmers to build an divesiryt and icnlusive ecosystem of larege models, and
at the same time of making resources allocaiton efficient. We may model
this by making the productivity multidimentional, since large models can be
useful for multiple tasks, meeting the diverse preferences of developers and
consumers.

The development of large models, given its huge externatilities, is vital
for the national competiveness. Among the countries that compete for large
models, two most prominent ones are China and the US. This can be seen
the Meta’s releasing of Llama, the menu of countries for user to download
llama list the US as the first, while China is not among the list. This is an
indication of the competiton of China and US in the arena of large models
and AI. The developement of large models are majorly powered by BigTech
private firms such as Amazon, Google, and Meta, while Chinese government
take more initiatives to power up the development of AI, including making
AI development a national strategy, building computing power clusters in
provinces, subsize home-made chips, boosting AI talent education, build data
bureau to facilitate the circulation of data factor in production. This leads to
the comparisions of the Socialism Large Models and Captalism Large Models.
The two approachs may need a economic framework to tell their pros and
cons and understand their competition dynamics.

Also, the open-source of large models draw parralles to the open-source
of protocols in the DeFi space. The open-source of DeFi protocols fun-
damentally change the ecosystem of traditional financial system. It opens
the composability and interoperablity to developers and allows consumers
to build finance logo based on their diverse needs. From the data of De-
FiLLamma, the total value locked(TVL) of DeFi protocols are distributed
with a long-tailed, highlighting the diverse and inclusive nature of the DeFi
system. The topic is of especial interests as the era is standing on the inter-
section of Centrealized Financen and Decentralized Finance. The notions of
Open-source, self-custody, composiblity, interopoerablity, are crucial for the
next-generation financial system. The parallels between open-source Large
models and DeFi system are especially meaningful.

The competition of AI fueled by the recent developments of large models
is relevant for the national competitiveness. It is crucial for regulators to
understand the policy implications. It is of policy relevance given the unique
features of large models including non-rivalry and externalities. We need
a framework to understand the battle of large models and inform optimal
policies. The rapid development of large language models (LLMs) has led
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to significant advancements in natural language processing and generated
substantial interest from both industry and academia [Brown et al., 2020,
Chowdhery et al., 2022, Hoffmann et al., 2022]. However, the competitive
landscape of LLM development has raised concerns about potential arms
races, duplication of efforts, and inefficient resource allocation [Strubell et al.,
2019, Ahmed et al., 2022].

This paper presents a unified model that captures the key aspects of LLM
development, including productivity growth, proprietary competition, open-
sourcing initiatives, and the role of community diversity. By incorporating
these factors into a coherent framework, we shed light on the dynamics of
LLM development and draw parallels to other domains, such as decentralized
finance (DeFi).

Open source models aggregate and integrates the decentralized talent and
computing power and lead them to innovate based on the state-of-the-art
(SOTA) quality of open-source model, this leads to a more efficient outcome
from the perspective of the society.

The companies of proprietary models enjoy economic rents from the dif-
ferences between the productivity of proprietary models and the most leading
open-source models.

Since open-source can aggregate decentralized computing power and tal-
ents and may help reduce the gap between open-source and the most leading
proprietary models, open source can be an endogenous and strategic choice.
The companies may strategically choose the timing and quality of the release
of open-source model.

In the context of the AI competition, my model sheds light on the com-
petition between socialism large models and capitalism AI.

2 Model Setup

2.1 Scarce Resources

Consider an economy with three scarce resources:

1. Computing power: Provided by a monopoly, denoted by M .

2. Algorithms: Developed by firms using existing models and algorithmic
talent, denoted by A.

3. Data: Consists of existing open-source datasets and user-generated
data, denoted by D.

There are N firms, indexed by i ∈ {1, 2, . . . , N}, that develop large language
models (LLMs) using these resources.
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2.2 Model Productivity and User Choice

The productivity of firm i’s LLM is given by:

qi = f(Ci, Ai, Di) (1)

where Ci, Ai, andDi represent the computing power, algorithmic capabilities,
and data used by firm i, respectively. The function f(·) is increasing in each
argument and exhibits diminishing returns [Brynjolfsson and Hitt, 2000].

The quality of firm i’s LLM evolves according to a Poisson jump process:

dqi(t) = λidNi(t) (2)

where λi is the average jump size and Ni(t) is a Poisson process with intensity
µi. The intensity of jumps is proportional to the firm’s computing power,
algorithmic capabilities, and data:

µi = αCi + βAi + γDi (3)

where α, β, and γ are positive constants.
Users choose to contribute data to LLMs based on their productivity.

The share of users contributing data to firm i’s LLM is given by:

si =
qi∑N
j=1 qj

(4)

This specification captures the idea that users are more likely to contribute
data to more productive LLMs [Rochet and Tirole, 2003].

2.3 Nash Bargaining

Firms engage in Nash bargaining with the monopoly computing power provider
and algorithmic talent [Nash Jr, 1950].

2.3.1 Computing Power

The surplus generated by firm i and the monopoly M is given by:

SiM = Ri(Ci)− PM(Ci)− R̄i − P̄M (5)

where Ri(Ci) is the revenue generated by firm i using computing power Ci,
PM(Ci) is the cost of providing Ci for the monopoly, and R̄i and P̄M are the
disagreement payoffs for firm i and the monopoly, respectively.

The Nash bargaining solution is given by:

max
Ci

(Ri(Ci)− R̄i)
β(PM(Ci)− P̄M)1−β (6)

where β ∈ (0, 1) represents the bargaining power of firm i relative to the
monopoly.
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2.3.2 Algorithmic Talent

Similarly, the surplus generated by firm i and algorithmic talent is given by:

SiA = Ri(Ai)−WA(Ai)− R̄i − W̄A (7)

where Ri(Ai) is the revenue generated by firm i using algorithmic capabilities
Ai, WA(Ai) is the cost of providing Ai for the talent, and R̄i and W̄A are the
disagreement payoffs for firm i and the talent, respectively.

The Nash bargaining solution is given by:

max
Ai

(Ri(Ai)− R̄i)
γ(WA(Ai)− W̄A)

1−γ (8)

where γ ∈ (0, 1) represents the bargaining power of firm i relative to the
algorithmic talent.

3 Proprietary Models versus Open-Source Mod-

els

Open-source models have the potential to aggregate decentralized talent and
computing power, leading to more efficient outcomes for society Von Hippel
and Von Krogh [2003], Lerner and Tirole [2002]. Proprietary model com-
panies enjoy economic rents from the productivity gap between their mod-
els and the leading open-source models Greenwald and Stiglitz [2014]. As
open-source models can reduce this gap, companies may strategically choose
the timing and quality of their open-source releases Casadesus-Masanell and
Ghemawat [2012], Lerner and Tirole [2002], Jiang et al. [2018].

4 Model Setup

Consider an economy with a continuum of firms indexed by i ∈ [0, 1]. Each
firm can develop proprietary models and contribute to open-source models.
The productivity of firm i’s proprietary model is denoted by AP

i , while the
productivity of the open-source model is AO.

4.1 Open-Source Model Productivity

The productivity of the open-source model is determined by the aggregation
of decentralized talent and computing power contributions, as well as the
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quality of open-source releases:

AO = f

(∫ 1

0

tidi,

∫ 1

0

cidi,

∫ 1

0

qidi

)
(9)

where ti, ci, and qi represent the talent contribution, computing power con-
tribution, and the quality of open-source release by firm i, respectively, and
f(·) is an increasing and concave function Von Hippel and Von Krogh [2003],
Jiang et al. [2018].

4.2 Proprietary Model Productivity

The productivity of firm i’s proprietary model is given by:

AP
i = g(ti, ci, A

O, qi) (10)

where g(·) is increasing in all arguments, reflecting the positive spillovers
from the open-source model to proprietary models and the impact of the
firm’s own open-source release quality Lerner and Tirole [2002], Jiang et al.
[2018].

4.3 Firm Optimization

Each firm aims to maximize its discounted sum of profits over an infinite time
horizon, considering the economic rents from the productivity gap between
its proprietary model and the open-source model, as well as the costs of
talent, computing power, and open-source release quality:

max
ti,τ ,ci,τ ,qi,τ τ=0∞

∑
τ = 0∞δτ

[
(AP

i,τ − AO
τ )− C(ti,τ , ci,τ )−K(qi,τ )

]
(11)

subject to:
AP

i,τ = g(ti,τ , ci,τ , A
O
τ , qi,τ ) (12)

AO
τ = f

(∫ 1

0

ti,τdi,

∫ 1

0

ci,τdi,

∫ 1

0

qi,τdi

)
(13)

where δ ∈ (0, 1) is the discount factor, C(·) is the cost function for talent and
computing power investments, and K(·) is the cost function for the quality of
open-source releases Casadesus-Masanell and Ghemawat [2012], Jiang et al.
[2018].
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5 Equilibrium Analysis

The equilibrium of the model is characterized by the following conditions:

1. Each firm chooses its talent investment ti,τ |∞τ=0, computing power in-
vestment ci, τ |∞τ=0, and open-source release quality q∗i,τ |∞τ=0 to maximize
its discounted sum of profits, given the strategies of other firms.

2. The open-source model productivity AO∗
τ is determined by the aggre-

gation of decentralized contributions and open-source release qualities
at each time τ .

3. The proprietary model productivity of each firm AP∗
i,τ is determined by

its investments (ti,τ , ci,τ ), the open-source model productivity AO∗
τ , and

its open-source release quality q∗i,τ at each time τ .

The equilibrium can be solved using dynamic programming techniques, such
as the Bellman equation, to obtain the optimal strategies of firms Stokey and
Lucas Jr [1989], Ljungqvist and Sargent [2012].

6 Implications and Discussion

The extended model incorporates the strategic choice of timing and quality of
open-source releases by firms. Companies balance the benefits of contributing
to the open-source model, which can improve their proprietary models, with
the costs of investing in talent, computing power, and the quality of open-
source releases Jiang et al. [2018]. The timing and quality of open-source
releases become dynamic decisions for firms, as they seek to maximize their
long-term profits while considering the actions of other firms and the evolu-
tion of the open-source model. This strategic behavior can lead to delays in
open-source contributions or the release of lower-quality models compared to
the socially optimal outcome Lerner and Tirole [2002], Jiang et al. [2018]. The
model highlights the importance of incentives and strategic considerations in
shaping the development of open-source models and their impact on propri-
etary model productivity. The efficiency of the open-source model and its
ability to close the productivity gap with proprietary models depend on the
endogenous choices of firms regarding their contributions and release strate-
gies Casadesus-Masanell and Ghemawat [2012], Jiang et al. [2018]. Future
research could extend the model by incorporating heterogeneity among firms,
such as differences in their capabilities or market positions, and exploring the
implications for industry dynamics and welfare. Empirical studies could also
test the predictions of the model using data on open-source contributions,
release strategies, and firm performance in the AI industry.
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6.1 Open-Source Models and Social Welfare

In the absence of open-source models, each firm’s LLM quality starts from a
low initial level and improves independently through Poisson jumps. How-
ever, when an open-source model with quality qO is introduced, firms can
build upon this model, effectively starting from a higher initial quality level.

Let W (q1, . . . , qN) be a measure of social welfare that depends on the
quality levels of all LLMs in the market. We assume that W is increasing in
each qi, reflecting the positive impact of LLM quality on society.

In the absence of open-source models, the expected social welfare at time
t is given by:

E[W (q1(t), . . . , qN(t))] =

∫ ∞

0

W (q1, . . . , qN)
N∏
i=1

pi(qi, t)dq1 . . . dqN (14)

where pi(qi, t) is the probability density function of firm i’s LLM quality at
time t, which evolves according to the Poisson jump process.

When an open-source model with quality qO is introduced, the expected
social welfare at time t becomes:

E[W (q1(t), . . . , qN(t))] =

∫ ∞

qO

W (q1, . . . , qN)
N∏
i=1

pi(qi, t)dq1 . . . dqN (15)

The lower bound of the integral changes from 0 to qO, reflecting the fact that
firms can now start building their LLMs from the open-source quality level.

Comparing the expected social welfare with and without open-source
models, we can show that the introduction of an open-source model improves
social welfare by:

∆W =

∫ qO

0

(W (qO, . . . , qO)−W (q1, . . . , qN))
N∏
i=1

pi(qi, t)dq1 . . . dqN > 0

(16)
This positive welfare gain arises because open-source models allow firms to
start from a higher quality level, reducing duplicative efforts and accelerating
the development of high-quality LLMs.

In summary, the incorporation of the Poisson jump process for LLM qual-
ity and the analysis of open-source models’ impact on social welfare provide
new insights into the dynamics of LLM development. The model suggests
that open-source initiatives can play a crucial role in mitigating the inefficien-
cies associated with proprietary competition and improving overall welfare
in the LLM ecosystem.
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7 Open-Source Models and Community Con-

tributions

7.1 Release of Open-Source Models

Consider a scenario where a company releases an open-source LLM with
productivity qO. Although qO is lower than the productivity of the most ad-
vanced proprietary model, it is still relatively high. The release of this open-
source model allows other firms and community members to build upon it,
reducing the need for repetitive investments and facilitating the development
of LLMs for diverse use cases [Von Hippel and Von Krogh, 2003, Lakhani and
Von Hippel, 2003].

7.2 Endogenous Choice of Open-Sourcing

The decision to release an open-source model can be an endogenous choice for
a company seeking to maximize the efforts of algorithmic talent on its specific
technological trajectory. By attracting more talent to work on its open-source
model, the company increases the likelihood of breakthrough innovations in
its chosen direction [Lerner and Tirole, 2002, West and O’mahony, 2008].
The company’s objective function can be written as:

max
qO

P (B|qO) · V (B)− C(qO) (17)

where P (B|qO) is the probability of a breakthrough innovation B given the
open-source model quality qO, V (B) is the value of the breakthrough, and
C(qO) is the cost of developing and maintaining the open-source model.

7.3 Community Diversity and Long-Tailed Distribu-
tion

The LLM development community consists of M members, indexed by j =
1, 2, . . . ,M , with heterogeneous preferences and capabilities. Each commu-
nity member j’s contribution to LLM development is denoted by yj(t), which
follows a power-law distribution [Clauset et al., 2009, Alstott et al., 2014,
Broido and Claffy, 2019]:

P (yj(t) > y) ∝ y−α (18)

where α > 1 is the scaling parameter. This long-tailed distribution cap-
tures the diversity of community contributions, with a few members making
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significant contributions while the majority make smaller but collectively im-
portant contributions. The choice of a power-law distribution is supported by
empirical evidence from open-source software development [Cosentino et al.,
2017, Zhang et al., 2019] and online community participation [Muchnik et al.,
2013, Yan et al., 2016].

The long-tailed distribution of community contributions can be ratio-
nalized by the preferential attachment mechanism [Barab’asi and Albert,
1999a, Merton, 1968]. In the context of LLM development, this implies that
community members are more likely to contribute to and build upon mod-
els that have already received significant attention and contributions from
others. This rich-get-richer phenomenon leads to a skewed distribution of
downloads, likes, and other measures of popularity across LLMs, reflecting
the diversity of preferences and capabilities within the community.

The long-tailed distribution of LLM popularity is non-trivial and cor-
responds to the notion of diversity and inclusion. It suggests that a few
dominant models are likely to emerge and capture a disproportionate share
of the community’s attention and contributions. However, the presence of a
long tail also highlights the importance of niche and specialized models that
cater to specific use cases and user preferences [Anderson, 2004, Brynjolfs-
son et al., 2006]. This allows for a diverse ecosystem of LLMs, where both
dominant and niche models coexist and contribute to the overall progress of
the field, promoting diversity and inclusivity.

The emergence of a long-tailed distribution in LLM downloads and likes
can be fundamentally attributed to the diversity and heterogeneity within
the LLM development community. A key factor driving this phenomenon
is the heterogeneous preferences and goals of different community members,
leading to a demand for specialized LLMs tailored to specific use cases and
requirements. As Falkinger [2020] demonstrates in the context of product
markets with quality uncertainty, heterogeneous consumer preferences can
result in a long-tailed distribution of product demand, with a few dominant
products coexisting with a diverse range of niche offerings catering to special-
ized preferences. Analogously, in the LLM ecosystem, the diverse preferences
and needs of developers, researchers, and end-users contribute to the emer-
gence of a long tail of specialized and niche LLMs alongside a few dominant
models.

Moreover, the development and application of LLMs require a diverse
set of knowledge and expertise, spanning domains such as natural language
processing, machine learning, domain-specific knowledge, and user experi-
ence design. As Akcigit et al. [2022] highlight, collaborativity and knowl-
edge diversity play a crucial role in fostering innovation and productivity.
In the LLM context, this diversity manifests through the collaboration and
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complementary expertise of diverse community members, facilitating the de-
velopment of a diverse range of LLMs and contributing to the long-tailed
distribution of downloads and likes. The collective efforts of community
members with diverse backgrounds, skills, and perspectives enable the cre-
ation of LLMs that cater to a wide array of use cases and requirements,
thereby shaping the long-tailed distribution.

Let di(t) denote the number of downloads or likes of LLM i at time t. We
can model the evolution of di(t) using a stochastic process that incorporates
the preferential attachment mechanism [Mandelbrot, 1953, Kong et al., 2008]:

ddi(t) = η
di(t)∑N
k=1 dk(t)

dt+ σidWi(t) (19)

where η > 0 is a parameter capturing the strength of the preferential at-
tachment effect, σi is the volatility of the process, and Wi(t) are independent
Brownian motions. The first term on the right-hand side of the equation
represents the preferential attachment mechanism, with the growth rate of
downloads or likes being proportional to the current level of popularity rel-
ative to the total popularity of all LLMs. The second term captures the
stochastic nature of the process, allowing for random fluctuations in pop-
ularity. This stochastic process can generate a long-tailed, power-law dis-
tribution of downloads or likes across LLMs in equilibrium [Gabaix, 1999,
Newman, 2005]. The skewed distribution arises from the self-reinforcing na-
ture of the preferential attachment mechanism, where popular models attract
more attention and contributions, further cementing their dominance.

Open-source initiatives can play a crucial role in shaping the long-tailed
distribution of LLM popularity. By providing access to high-quality models
and encouraging community participation, open-source projects can facilitate
the emergence of a diverse ecosystem of LLMs, where both dominant and
niche models coexist and contribute to the overall progress of the field.

8 Consumer Preferences and Long-Tailed Dis-

tribution

To capture the diverse preferences of consumers and generate results that fit
the long-tail pattern observed in the LLM ecosystem, we introduce Constant
Elasticity of Substitution (CES) preferences.
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8.1 CES Utility Function

Consider a continuum of consumers indexed by i ∈ [0, 1], each with CES
preferences over a variety of LLM products indexed by j ∈ [0, N ]. The
utility function of consumer i is given by [Dixit and Stiglitz, 1977, Anderson,
1987]:

Ui =

(∫ N

0

(βijcij)
ρdj

)1/ρ

(20)

where cij is consumer i’s consumption of LLM product j, βij > 0 is a product-
specific preference parameter capturing the idiosyncratic tastes of consumer
i for product j, and ρ ∈ (0, 1) is a parameter related to the elasticity of
substitution between LLM products, with a lower value of ρ indicating higher
substitutability.

8.2 Consumer Optimization

Each consumer i maximizes their utility Ui subject to a budget constraint:

max
cij

Ui =

(∫ N

0

(βijcij)
ρdj

)1/ρ

s.t.

∫ N

0

pjcijdj ≤ yi (21)

where pj is the price of LLM product j and yi is consumer i’s income. The
first-order conditions for optimality yield the following demand function for
consumer i and product j:

cij = (βij/pj)
1/(1−ρ)(yi/Pi) (22)

where Pi =
(∫ N

0
(β

1/(1−ρ)
ij p

−ρ/(1−ρ)
j )1−ρdj

)1/(1−ρ)

is the consumer-specific price

index.

8.3 Aggregate Demand and Pareto Distribution of Pref-
erences

The aggregate demand for LLM product j is given by:

Cj =

∫ 1

0

cijdi = (p
−1/(1−ρ)
j /P ρ)

∫ 1

0

β
1/(1−ρ)
ij yidi (23)

where P =
(∫ N

0
p1−ρ
j dj

)1/(1−ρ)

is the aggregate price index. Assuming that

the preference parameters βij follow a Pareto distribution with shape param-
eter α > 1 and scale parameter βmin > 0 [Reed and Jorgensen, 2001, Gabaix,
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2009]:
P (βij > x) = (βmin/x)

α for x ≥ βmin (24)

the aggregate demand Cj follows a power law with a tail index of (α(1−ρ)−
1)/(1 − ρ), provided that α > 1/(1 − ρ). This condition ensures that the
preference heterogeneity is sufficiently high relative to the substitutability
between products, generating a long-tail pattern in product demand. The
choice of the Pareto distribution for modeling consumer preferences is justi-
fied by empirical evidence and theoretical arguments from the economics and
marketing literature, which have found that consumer preferences and prod-
uct popularity often follow power-law or Pareto-like distributions in various
contexts [Brynjolfsson et al., 2003, Goel et al., 2010].

9 US-China Competition and Policy Implica-

tions

9.1 Introduction

To analyze the competition between socialism large models and capitalism
large models, we can develop a model that captures the unique aspects of
the two systems and draws upon the insights from top economics and finance
papers. The model will aim to inform the pros and cons of the two systems
and provide a clear mathematical framework in the standard of top economics
and finance journal papers.

9.2 Setup

Consider an economy with two types of large models: socialism large mod-
els (SLM) and capitalism large models (CLM). The SLM are developed and
maintained by a centralized entity, such as a government or a public in-
stitution, while the CLM are developed by private firms driven by profit
maximization incentives.

9.3 Socialism Large Models (SLM)

The productivity of SLM, denoted by ASLM , is a function of the resources
allocated by the centralized entity, RSLM , and the coordination efficiency,
θ ∈ [0, 1]:

ASLM = θf(RSLM) (25)
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where f(·) is an increasing and concave function, reflecting the diminish-
ing returns to resource allocation Acemoglu et al. [2012]. The parameter
θ captures the ability of the centralized entity to coordinate resources and
internalize externalities Holmstrom [1999]. The centralized entity aims to
maximize social welfare, W , which is a function of the productivity of SLM
and the resources allocated:

max
RSLM

W (ASLM , RSLM) = ASLM − c(RSLM) (26)

subject to a resource constraint:

RSLM ≤ R̄ (27)

where c(·) is the cost function, which is increasing and convex in RSLM , and
R̄ is the total available resources for AI development in the economy.

9.4 Capitalism Large Models (CLM)

The productivity of CLM, denoted by ACLM , is determined by the resources
allocated by private firms, RCLM , and the market size, M :

ACLM = g(RCLM ,M) (28)

where g(·) is increasing in both arguments. The market size M is endoge-
nously determined by the demand for AI services, which is a function of the
productivity of CLM and the price, p:

M = h(ACLM , p) (29)

where h(·) is increasing in ACLM and decreasing in p, capturing the positive
network effects and the self-reinforcing nature of AI adoption in a market
economy Goldfarb and Trefler [2018]. Private firms maximize their profits,
π, by choosing the optimal level of resource allocation and price:

max
RCLM ,p

π(ACLM , RCLM , p) = pM − c(RCLM) (30)

where c(·) is the cost function, which is increasing and convex in RCLM .

9.5 Equilibrium and Comparative Analysis

The equilibrium outcomes of the two systems can be determined by solving
the optimization problems of the centralized entity and the private firms. The
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equilibrium productivity levels, ASLM and ACLM , the corresponding resource
allocations, RSLM and RCLM , and the price p∗ will depend on the functional
forms and parameters of the model. To compare the performance of the
two systems, we can analyze the relative magnitudes of ASLM and ACLM ,
as well as the social welfare implications. The model can also be extended
to incorporate dynamic aspects, such as the evolution of technology and the
strategic interactions between the two systems Aghion et al. [2005]. The key
trade-off between the two systems lies in the coordination efficiency (θ) of the
centralized entity in the SLM and the market size effects (h(·)) and the profit
incentives in the CLM. If θ is high, the SLM may achieve higher productivity
and social welfare compared to the CLM by effectively internalizing exter-
nalities and avoiding duplication of efforts Bloom et al. [2013]. However, if
the market size effects and the profit incentives are strong enough, the CLM
may outperform the SLM in terms of productivity and innovation by har-
nessing the power of decentralized decision-making and market competition
Hayek [1945]. Furthermore, the model can be used to study the potential for
cooperation or competition between the two systems. If the SLM and CLM
can share resources or knowledge, there may be potential for synergies and
improved outcomes for both systems Akcigit et al. [2016]. Alternatively, if
the two systems engage in a zero-sum game or an arms race, it may lead to
inefficiencies and suboptimal outcomes Acemoglu and Restrepo [2018].

9.6 Conclusion

This model provides a stylized framework for analyzing the competition be-
tween socialism large models and capitalism large models, drawing upon the
insights from top economics and finance papers. By capturing the unique
aspects of the two systems, such as the coordination efficiency in the SLM
and the market size effects and profit incentives in the CLM, the model gen-
erates insights into the potential outcomes and trade-offs of this competition.
The model highlights the key role of institutional factors, such as the abil-
ity of the centralized entity to internalize externalities and the strength of
market forces, in determining the relative performance of the two systems.
It also suggests potential avenues for cooperation and the risks of inefficient
competition between the SLM and CLM. Future research can build upon
this model by incorporating more realistic assumptions, empirical evidence,
and policy implications, thereby contributing to the understanding of the
economic and social consequences of large model development in different
institutional contexts.
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9.7 Computing Power and Energy Consumption

The monopoly provider of computing power is based in the US, while China
is developing its own computing power companies and infrastructure. The
competition between the two countries in this domain has led to initiatives
to build computing power clusters in China [Zhang, 2021]. The arms race
in computing power investment can lead to negative externalities in terms
of energy consumption. Policymakers should consider measures to internal-
ize these externalities, such as carbon taxes or energy efficiency standards
[Acemoglu et al., 2012].

9.8 Algorithmic Capabilities and Open-Source Models

Open-source LLMs can help bridge the gap in algorithmic capabilities be-
tween the US and China. The availability of high-quality open-source models
can enable Chinese firms and researchers to build upon existing knowledge
and contribute to the global LLM community [Sun et al., 2021]. Policymak-
ers should support the development and adoption of open-source models to
promote innovation and collaboration across borders. This can be achieved
through funding for open-source projects, tax incentives for companies con-
tributing to open-source development, and the establishment of international
standards and protocols [Athey and Luca, 2017].

9.9 Algorithmic Talent and Human Capital

The quality and quantity of algorithmic talent in the US and China play
a crucial role in the development of LLMs. The competition between the
two countries extends to the attraction and retention of top talent in the
field [Chen and Zhang, 2021]. Policymakers should invest in education and
training programs to develop domestic talent pools and create incentives for
international talent to contribute to their respective LLM ecosystems. This
can include scholarships, research grants, and visa programs for high-skilled
workers [Hanson, 2011].

9.10 Players, Capabilities, and Policies

Consider two countries: the United States (US) and China (CN). Each coun-
try i ∈ US,CN has a set of Ni companies engaged in LLM development, with
each company j’s productivity denoted by qij(t). The overall technological
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capability of each country i is given by:

Qi(t) =
∑
j

qij(t) (31)

Let xi(t) denote the investment of country i in LLM development at time t,
which can include direct funding, tax incentives, or other support measures,
and define si(t) ∈ [0, 1] as the degree of openness or collaboration of coun-
try i at time t, with higher values indicating more open-source sharing and
international collaboration. Each country i’s policy vector is given by:

pi(t) = (xi(t), si(t)) (32)

9.11 Impact of Policies on LLM Development

The productivity growth of company j in country i is influenced by the
country’s policies and the global open-source knowledge pool:

dqij(t) = (αixi(t) + βiQ(t))dt+ σijdWij(t) (33)

where αi and βi are country-specific coefficients capturing the effectiveness
of domestic investment and open-source knowledge absorption, respectively,
Q(t) = sUS(t)QUS(t)+sCN(t)QCN(t) is the global open-source knowledge pool,
weighted by each country’s degree of openness, and Wij(t) are independent
Brownian motions representing company-specific productivity shocks.

9.12 Objectives, Payoffs, and Equilibrium Analysis

Each country i aims to maximize its expected long-term technological capa-
bility:

max
pi(t)

E
[∫ ∞

0

e−ritQi(t)dt

]
(34)

where ri is the discount rate of country i. The payoff of country i depends
on its own technological capability Qi(t) and the relative capability of the
other country Qj(t):

πi(t) = Qi(t)− γi(Qj(t)−Qi(t)) (35)

where γi ∈ [0, 1] captures the degree of strategic interdependence or rivalry

between the two countries. The equilibrium strategies p
(
it) = (x

(
it), s

∗
i (t)) for

each country i can be derived using dynamic game theory techniques, such
as Markov perfect equilibria or open-loop equilibria [Fudenberg and Tirole,
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1991, Basak and Hu, 2016]. Comparative statics analysis can be conducted to
examine the impact of changes in key parameters, such as the effectiveness
of domestic investment, absorptive capacity for open-source knowledge, or
degree of strategic rivalry, on the equilibrium strategies and outcomes.

10 Parallels to Other Innovation Domains

The dynamics observed in the LLM ecosystem, such as the role of open-
source models and the competition between the US and China, have parallels
in other innovation domains, such as drug discovery and patent protection
[Sampat, 2018]. In the pharmaceutical industry, the debate around patent
protection and generic drugs mirrors the discussion on proprietary and open-
source LLMs. Policymakers can learn from the experiences in these domains
to design effective intellectual property regimes and innovation policies for
the LLM ecosystem [Cockburn et al., 2016].

11 DeFi and the Introduction of Open-Source

in Finance

Decentralized Finance (DeFi) has emerged as a transformative force in the
financial industry, introducing open-source principles and technologies to a
traditionally closed and proprietary system [Chen et al., 2020, Sch”ar, 2021].
DeFi protocols, built on blockchain networks such as Ethereum, enable the
creation of transparent, permissionless, and interoperable financial applica-
tions, challenging the dominance of traditional financial intermediaries [Zet-
zsche et al., 2020, Werner et al., 2021]. The open-source nature of DeFi
protocols has several implications for the financial system. First, it allows
for greater transparency and auditability, as the underlying code is publicly
available and can be scrutinized by anyone [Gudgeon et al., 2020]. Second,
open-source DeFi protocols enable permissionless innovation, as developers
can build upon existing infrastructure and create new financial products and
services without the need for centralized authorities [Amler et al., 2021].
Third, the composability and interoperability of DeFi protocols allow for
the creation of complex and interconnected financial systems, where differ-
ent components can be combined and leveraged to unlock new use cases and
efficiencies [Owen, 2020].
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11.1 Long-Tailed Distribution of TVL in DeFi Proto-
cols

One interesting observation in the DeFi ecosystem is that the distribution
of Total Value Locked (TVL) across different protocols follows a long-tailed
pattern [Pulse, 2021, Llama, 2021]. TVL is a measure of the total value of
assets that are locked or staked within a particular DeFi protocol, and it
serves as a proxy for the adoption and popularity of that protocol [Liu and
Tsyvinski, 2020]. Empirical data from DeFi analytics platforms such as DeFi
Pulse and DeFi Llama reveal that a small number of protocols account for
a disproportionately large share of the total TVL in the ecosystem, while a
long tail of smaller protocols collectively holds a significant portion of the
remaining value [Angeris and Chitra, 2020, Singh and Singh, 2020]. This
distribution is reminiscent of the power-law or Pareto distribution observed
in various other contexts, such as city sizes, income distribution, and website
traffic [Gabaix, 2016, Clauset et al., 2009]. The long-tailed distribution of
TVL in DeFi protocols can be explained by several factors, including network
effects, first-mover advantages, composability, and the open-source nature
of DeFi, which enables the rapid proliferation of new protocols and forks,
leading to a highly diverse and fragmented ecosystem [Gudgeon et al., 2020,
Young, 2020, Zhang et al., 2021].

11.2 A Model for DeFi, Open-Source, and Long-Tailed
TVL Distribution

To capture the dynamics of the DeFi ecosystem, we propose a model that in-
corporates open-source protocols, stochastic growth, and preferential attach-
ment. Consider a DeFi ecosystem with N open-source protocols, indexed
by i = 1, 2, . . . , N . Each protocol i has a certain level of total value locked
(TVL), denoted by Vi, which evolves according to a geometric Brownian
motion (GBM) [Hull, 2003]:

dVi(t) = µiVi(t)dt+ σiVi(t)dWi(t) (36)

where Vi(t) is the TVL of protocol i at time t, µi is the expected growth rate,
σi is the volatility, and Wi(t) is a standard Brownian motion. The growth
rate µi can be decomposed into an organic growth rate ri due to the protocol’s
inherent utility and attractiveness, and a network effect and composability
benefit λi derived from the open-source ecosystem [Cong et al., 2021]:

µi = ri + λi (37)
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The network effects and composability benefits λi can be modeled using
a preferential attachment mechanism [Barab’asi and Albert, 1999b]. The
probability Πi that a new user or developer chooses to interact with protocol
i is proportional to its TVL:

Πi =
Vi∑N
j=1 Vj

(38)

This preferential attachment mechanism reinforces the growth of popular
protocols, leading to a rich-get-richer phenomenon [Liu et al., 2021]. The
combination of the open-source ecosystem, stochastic growth, and preferen-
tial attachment mechanism can generate a long-tailed distribution of TVL
across DeFi protocols. The distribution can be approximated by a power law
[Clauset et al., 2009]:

P (V > v) ∝ v−α (39)

where P (V > v) is the probability that a protocol has a TVL greater than
v, and α > 0 is the scaling exponent. The smaller the value of α, the heavier
the tail of the distribution. The long-tailed distribution emerges due to the
heterogeneity in protocol growth rates and the reinforcing effects of prefer-
ential attachment [Mitzenmacher, 2004]. A few protocols with high TVL
and strong network effects dominate the ecosystem, while a large number
of smaller protocols coexist, serving niche markets and providing a diverse
range of services [Wang et al., 2021].

11.3 Parallel with the LLM Ecosystem

The emergence of open-source principles in the financial system through DeFi
shares several parallels with the development of the Large Language Model
(LLM) ecosystem. Both domains have witnessed the transformative impact
of open-source technologies, enabling permissionless innovation, collabora-
tive development, and the democratization of access to powerful tools and
resources [Nguyen et al., 2022, Gao et al., 2022]. Moreover, the long-tailed
distribution of TVL in DeFi protocols mirrors the distribution of contribu-
tions and adoption in open-source LLM communities, where a few domi-
nant models and platforms coexist with a diverse array of smaller and more
specialized initiatives [Huang et al., 2022, Qiu et al., 2022]. This similar-
ity suggests that the underlying dynamics of network effects, composability,
and user preferences shape the structure and evolution of both ecosystems.
Drawing insights from the DeFi experience, the LLM community can leverage
the power of open-source collaboration while also being mindful of the risks
and challenges associated with concentration and fragmentation. Fostering a
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healthy and sustainable ecosystem that balances innovation, inclusivity, and
stability will be crucial for realizing the full potential of LLMs in various
domains, from natural language processing and content generation to knowl-
edge management and decision support [Bommasani et al., 2021, Zeng et al.,
2022].

12 Conclusion

This paper presents a comprehensive model of the LLM ecosystem that cap-
tures the key roles of computing power, algorithms, and data as scarce re-
sources. The model incorporates Nash bargaining between firms and resource
providers, separating equilibria based on firm size, and the endogenous choice
of open-sourcing by companies. The analysis highlights the potential of open-
source LLMs to reduce arms races, enable diverse applications, and bridge
the algorithmic capability gap between the US and China. We show that
open-source models and communities can reduce duplicative investments and
resource waste caused by arms races, promote diversity and inclusivity in the
digital ecosystem, and foster long-tail economics. Policymakers should con-
sider measures to internalize the negative externalities of computing power
investment, support open-source initiatives, and invest in human capital de-
velopment. The parallels drawn between the LLM ecosystem and other in-
novation domains, such as drug discovery and patent protection, provide
valuable insights for the design of effective policies and incentive mecha-
nisms. Furthermore, we explore the similarities between the LLM ecosystem
and the emergence of open-source principles in the financial system through
DeFi, highlighting the common underlying dynamics shaping the structure
and evolution of both ecosystems. As LLMs and DeFi continue to evolve
and mature, drawing insights and lessons from each other’s experiences can
help navigate the challenges and opportunities ahead. By embracing open-
source principles while addressing the risks and limitations, these ecosystems
can chart a path towards a more inclusive, resilient, and impactful future,
redefining the boundaries of artificial intelligence and finance.
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