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|. "Wagel” Dataset

» Source: Wooldridge (2003, p. 226)

» Dependent variable is log(wage)(Iwage).

» The explanatory variables:

1.

kw0

educ(years of education)

exper (the number of years of potential experience)
tenure (the number of years with their current employer)
female('Female'/"Male')

married('Married' /'Notmarried").

» n = 526 observations.



[1. Motivation

>

>

Hayfield and Racine(2008) analyze "wagel” dataset by using various
nonparametric and semi-parametric methods in the "np" package.

However, they use R? to compare the goodness-of-fit among the
models, which doesn't make sense for choosing an appropriate
model.

| aim to choosing the model with best predictive ability.

1. b-fold cross validation, each time | get 1 MADE of the whole
sample.

2. Repeat 100 times.

3. Boxplot MADE and choose the best model.
Issue: This method is compute-intensive.(1 hour each time)
Solution: | use HPC and parallel computation.

Finding: Nonparametric kernel regression(Racine and Li, 2004; Li
and Racine, 2004) has the best predictive ability for "wagel”
dataset.



[11. Models

1. OLS Model:

In wage; = p + Bifemale; + Bamarried; + Pseduc;
+ Baexper; + ﬁg)exper,2 + Bgtenure; + ﬁﬂ'enure,2 + €

2. Kernel Regression (Racine and Li, 2004; Li and Racine, 2004):
In wage; = g(female;, married;, educ;, exper;, tenure;) + €;
3. Partially Linear Model (Li and Racine, 2003):
In wage; = fifemale; + Samarried; + Bzeduc; + Batenure; + g(exper;) + €;
4. Semiparametric Single-index Model (Ichimura, 1993):
In wage; = g(female; + pymarried; + Poeduc; + Psexper; + Batenure;) + €;
5. Varing Coefficients Model (Li and Racine, 2010):

In wage; = p(female;) + 1(female;) - married; + [2(female;) - educ;
+ Bs(female;) - exper; + Ba(female;) - tenure; + ¢;



OLS Model

Table 1: Summary of OLS Model

call:
Im(formula = Twage ~ female + married + educ + exper + expersq +
tenure + tenursg, data = wagel)

residuals:
Min 10 Median Ely] Max
-1.81906 -0.24904 -0.02119 0.245325% 1.127532

coefficients:
Estimate std. Error t value Pri=|tl|)

(Intercept) 0.1805217 0.10&65639 1.694 0.0909 .
femaleMale 0.2901837 0.0381121 §.036 6.33e-15 #=#*®
marriedNotmarried -0.0529219 0.04075361 -1.299 0.1947

educ 0.0791547 0.0068003 11.640 <« 2e-16 ##%
exper 0.0269535 0.0053258 5.061 5.80e-07 ##*
expersq -0.0005399 0.0001122 -4.813 1.95e-06 ##**
tenure 0.0312962 0.006B482 4,570 6.10e-06 ®=#*
Tenursq -0.0005744 0.0002347 -2.448 0.0147 *
signif. codes: 0 *‘##¥=' 0,001 ‘*¥’ 0.01L ‘*’ 0.05 “." 0.1 * ' 1

residual standard error: 0.3995 on 518 degrees of freedom
Multiple R-squared: 0.4426, Adjusted R-squared: 0.4351
F-statistic: 58.76 on 7 and 518 DF, p-value: < 2.2e-16



OLS Model

Residuals vs Fitted Normal Q-Q
<] 50 05907
= e &
al =
= 3
ER-N 8
s ° Lo
€. ] 3
o LR
g . &
o ° T
& o2
05 10 15 L, 20 25 3 2 Al 0 1 2 3
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
SR
o
3o EH
e 3
2 34 3
=
=
< T T T T T T T — T T T T
05 10 15 20 25 0.00 U,US‘_E 0.10 015 020 025 030
Fitted values Leverage

Figurel: Plots of Residuals



Kernel Regression

Kernel Regression Estimator: Local-Linear

Bandwidth Selection Method: CV.AIC

Continuous Kernel Type: Second-Order Gaussian
Unordered Categorical Kernel Type: Aitchison and Aitken
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Figure2: Plots of Kernel Regression Model




Partially Linear Model

Note: More computationally burdensome than fully nonparametric
models.

In wage; = (1female; + Bymarried; 4+ Bseduc; + Satenure; + g(exper;) + €;

Table2: Summary of Partially Linear Model

partially Linear Model
Regression data: 526 training points, in 5 variable(s)
wWith 4 linear parametric regressor(s), 1 nonparametric regressor(s)

y(2)
gandwidth(s): 2.050976

x(z)

Bandwidth(s): 4.194368
1.353161

3.160555

5.238182

female married educ tenure
coefficient(s): 0.2861456 -0.03833231 0.0788131 0.01616543

Kernel Regression Estimator: Local-Constant
Bandwidth Type: Fixed

Residual standard error: 0.3929321
R-squared: 0.452499

continuous Kernel Type: Second-order Gaussian
No. Continuous Explanatory vars.: 1



Semiparametric Single-index Model

In wage; = g(female; + S1married; + Beduc; + Psexper; + Batenure;) + €;
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Figure3: Plot of Single-index Model



Varing Coefficients Model
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Figure4: Coefficents of the Explanatory Variables




V. Results
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Figureb: Results of Prediction
Nonparametric kernel regression has the best predictive ability.

Future study: Try more combinations of variables and apply this
method to analyze other datasets.



