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Overview

▶ How Uniswap works? Automated Market Making (AMM) and
liquidity pool

▶ Develop a model to compare and contrast limit order market and
AMM, identifying the conditions under which an AMM is better
than a limit order market

▶ Use high-frequency block-by-block data to verify the implications of
its theory and visualize the transactions on Uniswap
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1 Introduction

▶ Uniswap is a decentralized exchange that launched in November
2018

▶ A system of smart contracts on the Ethereum blockchain
▶ A novel model of liquidity provision, Automated Market Making

(AMM), different from a limit order market
▶ Committed liquidity supply tops 3 billion USD among various

cryptocurrencies
▶ Transactions worth over 700 million USD per day
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Automated Market Maker (AMM)

▶ In an automated market maker (AMM) such as Uniswap, each asset
pair comprises a distinct pool or market

▶ Agents supply liquidity by adding the pair in proportion to the
existing pool

▶ Agents demand liquidity by adding one asset and removing the other
▶ The relative proportion of the two traded assets determines the

average price paid and is calculated according to a predetermined
downward sloping, convex relationship, a bonding curve

▶ The convexity implies that larger orders have a larger price impact
▶ All liquidity demanders pay a proportional fee to the liquidity

suppliers
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Two Key Differences between an AMM and a Limit Order
Market

▶ In the AMM, the benefits and costs of supplying liquidity are
mutualized: Liquidity suppliers are not in competition

▶ In contrast, in the limit order book, strategic liquidity suppliers
actively compete with each other – the costs and benefits of
supplying liquidity are individual to each liquidity supplier

▶ In the AMM price impact is deterministic. In particular, the
transaction price is determined by the bonding curve and is perfectly
predictable given the size of the liquidity pool and incoming order

▶ By contrast, in the limit order market, liquidity suppliers choose the
price impact that maximizes their profits
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The Equilibrium Effect of these Two Key Differences in a
Volatile Market

▶ Risk neutral liquidity suppliers, a liquidity demander and an
arbitrageur all interact

▶ In both markets, liquidity suppliers may be adversely selected as
liquidity is posted before any potential asset innovation

▶ In a limit order book market, competing liquidity suppliers post
prices to trade off adverse selection risk against profitable liquidity
supply

▶ In the AMM, liquidity suppliers trade off liquidity fees and adverse
selection of an informed arbitrageur
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▶ In the limit order market liquidity suppliers retain all the price
impact revenue from supplying liquidity

▶ In the AMM, arbitrageurs obtain this benefit and liquidity suppliers
only earn the fees

▶ The fact that there can be both competition that decreases
transaction costs and competition that increases transaction costs
means that it does not always dominate the AMM

▶ For assets that have lower volatility (and hence adverse selection)
the AMM can be more effective (i.e., is cheaper) at providing
liquidity



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Literature about the Optimality of Market Rules

▶ This paper is related to the literature about the optimality of
market rules

▶ Lawrence R. Glosten (1998) studies the optimality of time priority
(FIFO) rule shows that pro rata rationing changes the marginal
payoff to liquidity provision and hence the posted volume

▶ Richard Haynes & Esen Onur (2020) discuss the price efficiency of
pro rata rationing using a natural experiment from the Treasury
Futures market
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Literature on Liquidity Provision

▶ This paper is also linked to the large literature on liquidity provision
in limit order markets

▶ Since Lawrence R. Glosten (1994), the efficiency of the limit order
book in supplying liquidity has been widely accepted

▶ Most modern markets operate as a form of an open electronic limit
order book

▶ In contrast to equity markets, option markets have long used pro
rata rationing. First, to allocate marketable orders across market
makers and second to allocate early exercise assignments across
writers. Hao, Kalay, & Mayhew (2009) documents such rationing in
options markets
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Literature on Competition that does not Lead to Cheaper
Liquidity

▶ The rise of high frequency traders has generated research into
competition that does not lead to cheaper liquidity

▶ Biais, Foucault, & Moinas (2015): market competition on speed
generates both positive and negative externalities

▶ Hendershott & Riordan (2019): high limit order submission and
cancellation, consistent with strategic liquidity provision
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The Model Setting is Different

▶ This paper also connects to the papers analyzing the theoretical
properties of constant function market makers

▶ Ito & Aoyagi (2021) present a model in which traders choose
between a centralized ’market maker’ market and an automated
market maker

▶ By contrast, we take the population of traders in each market as
given
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The Focus is Different

▶ Most closely related to our work is Agostino Capponi & Ruizhe Jia
(2021)

▶ They present a model and test of an AMM with a focus on
competition among arbitrageurs, allowing them to consider the joint
determination of gas fees and pool size

▶ By contrast, our focus is on the comparison of a limit order market
with AMM as markets for liquidity

▶ In particular, we focus on the tradeoff between liquidity fees and
adverse selection
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Our Data are more Extensive

▶ Andreas Barbon Angelo Ranaldo (2021) compares transaction costs
and price efficiency on various decentralized exchanges and Binance
for five different token pairs, concluding that due to the fixed cost
of gas fees, trading costs on the DEX are higher than the CEX

▶ Their data only permits them to use the median gas fee over the
entire sample, which as we point out, overestimates the cost of
transacting
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Constant Product and Automated Market Making

▶ We describe the market making mechanics on Uniswap V2
▶ Eth, the native cryptocurrency on the Ethereum Blockchain
▶ We use Eth as the numeraire, and other coin as ”token”
▶ A liquidity provider deposits both Eth ad the token into the pool
▶ The deposit ratio is determined by the existing ratio, which

implicitly defines the Eth price of the token
▶ Liquidity provider receives a proportional amount of a liquidity token
▶ Liquidity providers can redeem their liquidity tokens at any time and

get their share of the current liquidity pool paid out in equal value
of Eth and tokens

▶ Although adverse selection, providing liquidity is potentially
profitable because each trade faces a tax of 30bps which is
redeposited into the pool
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▶ To buy the token, deposit Eth into the pool, and withdraw the token
▶ The amount that he has to deposit or withdraw depends on the

bonding curve

▶ The trader deposits T1 − T0 of the token into the pool, and he
would receive E0 − E1 Eth

▶ Arbitrageurs trade in the opposite direction to return the ratio to
equilibrium
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▶ Constant product k := T1 · E1 = T0 · E0

▶ For each pool, the constant k, depends on the amount of liquidity
that has been deposited inthe pool up to this point

▶ If more liquidity is posted, the constant changes
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Assessing Liquidity Fees
▶ Suppose that an agent wants to trade e Eth in exchange for tokens.

The exchange collects a fee τ , which benefits liquidit holders
▶ The effective amount of Eth that gets traded is (1 − τ)e
▶ Before fee revenue liquidity pool balance E′ = E + (1 − τ)e
▶ Following the bonding curve, the post trade token balance must be

T′ =
T · E

E′ =
T · E

E + (1 − τ)e

▶ The amount of token t that the trader receives is

t = T − T′ =
(1 − τ)eT

(1 − τ)e + E

▶ The terms of trade expressed in Eth/token is

ptot =
e
t =

e
T +

E
(1 − τ)T
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▶ The terms of trade have a natural interpretation as a spread
▶ Suppose the fundamental value of the token denominated in Eth is

p0, then in equilibrium p0 = E
T

▶ The liquidity fee generates what is essentially a tick size that is
distinct from the volume-induced price impact that the trader pays
when he moves long the bonding curve

lim
e→0

ptot

p0
=

ET
ET(1 − τ)

=
1

1 − τ

▶ When buying tokens, traders have to pay a fixed spread of 1
1−τ p0.

Sales traders have to pay a fixed spread of (1 − τ)p0
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Pool Size
▶ The price that a trader gets is determined by the bonding curve and

the volume of posted liquidity
▶ In particular, the price impact of a marginal increase in the order is

∂p/∂e = 1
T . As the liquidity pool grows, the price impact of a fixed

order size decreases
▶ The blue line: a small pool; the orange line: a large pool
▶ Larger orders face worse marginal prices as they do in a limit order

book
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Framework

▶ A market for one asset, with current value p0

▶ With probability α there is an innovation and the asset is equally
likely to jump up or down to p0 + σ or p0 − σ respectively, else the
asset value remains p0

▶ A potentially informed trader monitors the market and trades
whenever profitable

▶ A liquidity trader trades a fixed quantity q and is equally likely to
buy or sell, at any price p ∈ [p0 − σ, p0 + σ]

▶ There are two rational, deep pocketed, liquidity suppliers who
potentially enter the market before the passive trader and supply
liquidity that optimally trades off the surplus they can extract from
the liquidity trader against the possibility of being “picked off” by
an arbitrageur
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▶ Two liquidity suppliers as it is the minimum required for competition
▶ Rational liquidity suppliers can privately invest to increase the

probability that they will be a monopolist liquidity supplier
▶ The symmetric investment cost is I(γ) = aγ2

▶ If liquidity supplier i chooses γi and liquidity supplier j chooses γj
then nature assigns i to be the sole liquidity supplier with probability
γi(1 − γj)

▶ This private investment captures the idea that liquidity suppliers
have an incentive to compete in many different ways, such as
co-location or speed

▶ We consider the case where informed trader buys. The case where
informed trader sells is symmetric
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Limit Order Market

▶ The amount that the liquidity trader trades is fixed, q, and so this is
also the amount that the liquidity suppliers post

▶ The informed trader will trade the maximum amount possible if it is
profitable, i.e., 2q

▶ If a liquidity supplier is alone in the market, then he will always post
a sell price of p0 + σ. Posting at this high price completely mitigates
adverse selection, and at the same time extracts maximal surplus
from the passive trader

▶ A monopolist liquidity supplier in the market, will post a sell price of
p0 + σ, and a buy price of p0 − σ obtain an ex ante profit of
q(1 − α)σ
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▶ By contrast, if two competing liquidity suppliers are in the market
then a liquidity supplier who charges the highest feasible price will
always be undercut and lose out on the profitable trade against the
passive trade

▶ In this way, rivalrous liquidity provision will make them aggressively
undercut. The symmetric equilibrium is in mixed strategies

▶ If two competing liquidity suppliers are in the market offering orders
to sell, then in the symmetric, mixed strategy equilibrium each will
choose a distribution over prices Fs(·) over [p0 + ασ, p0 + σ], where

Fs(p) = (p − p0)− ασ

(p − p0)(1 − α)

▶ A symmetric expression holds for competing liquidity buyers. Each
competing liquidity suppliermakes zero profits
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▶ Each trader chooses private investment, γ∗ = (1−α)σq
2a+σq(1−α)

▶ The optimal private investment is increasing in σ and q, and
decreasing in α and a



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Automated Market Maker

▶ In the AMM or bonding curve market, liquidity suppliers choose a
market and commit quantities of both Eth and Tokens

▶ The first thing to observe is that liquidity provision is not rivalrous
and there is no incentive for private investment as there was in the
limit order market

▶ The second thing to observe is that the AMM requires committed
capital

▶ We will start our analysis under the assumption that the price in the
bonding curve market is equal to the equilibrium price, or b0 = p0.
E0
T0

= b0, E0T0 = k, (E0 + e)(T0 + t) = k
▶ k is the constant of the bonding curve. We simplify the algebra that

follows by assuming that liquidity fees do not change the size of the
pool, but are placed into a separate account

▶ In reality, liquidity fees are paid into the pool and therefore change
the bonding curve constant
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▶ If the liquidity trader buys tokens, they will remove q tokens, and
will buy these with Eth and add in eb

l to the Eth pool

(E0 + eb
l )(T0 − q) = E0T0

eb
l =

E0T0
T0 − q − E0

▶ The fees paid by this noise trader are τeb
l
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▶ An arbitrageur will reverse this trade, adding tokens and remove Eth
▶ The arbitrageur also pays the fee
▶ the payoff to liquidity provision is twice the fee paid by the liquidity

trader, or 2τeb
l

▶ With probability (1 − α), there is a liquidity event and the fee
revenue for liquidity provision is:

2τp0q( T0
T2

0 − q2 )
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▶ Now suppose that there was a positive innovation event so that an
informed trader arrives. Since the pricing is deterministic she will
trade an amount that maximizes her profit

▶ She will buy tb tokens and pay eb
I for them such that

(T0 − tb)(E0 + eb
I ) = E0T0

▶ Her profit function is

πb
I = (p0 + σ)tb − (1 + τ)[

E0T0
T0 − tb − E0]

▶ Given the convexity of the bonding curve, the optimal trading
amount is determined by the first order condition,

(p0 + σ)− (1 + τ)
E0T0

(T0 − tb)2 = 0
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▶ The optimal transaction amount

tb = T0 −

√
(1 + τ)E0T0

p0 + σ

eb
I =

√
E0T0(p0 + σ)

(1 + τ)
− E0

▶ In order to have tb ≥ 0, we should have τ ≤ σ
p0

, so that the
transaction cost is low relative to the information

▶ After the innovation, absent informed trading, the Eth value of the
total supplied capital would be E0 + (p0 + σ)T0

▶ Given the informed trade, the Eth value of the supplied capital is

E0 + eb
I + (p0 + σ)(T0 − tb) =

√
E0T0(p0 + σ)(

2 + τ√
1 + τ

)
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▶ The change in value of supplied capital for liquidity suppliers after
an increase in the value of the asset is:

2 + τ√
1 + τ

√
T0E0(p0 + σ)− (E0 + (p0 + σ)T0)

▶ This change in value corresponds to ”picking off” risk, in the sense
that the informed trader rebalances the amount of Eth and Tokens
to reflect the value in the wider market

▶ However, the arbitrageur pays a liquidity fee for an amount equal to
τ(
√

E0T0(p0+σ)
(1+τ) − E0)

▶ Balancing the picking-off risks and liquidity provision benefits, the
liquidity providers choose the equilibrium size of the pool
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▶ Suppose that 0 < τ < σ
p0

, then the equilibrium supply of Tokens is
given by

T0 = q[
√

1 +
(1 − α)2τ 2p2

0
α2ω2 − (1 − α)τp0

αω
]

where ω =
√

p0(p0 + σ)(1 + τ) +
√

p0(p0−σ)
1+τ − 2p0

▶ The parameter restrictions are intuitive. If the payoff to liquidity
suppliers is too small, then pools are not sustainable

▶ If the payoff to liquidity provision is too large, then arbitrageurs will
not find it lucrative to trade on information, and will also not trade
to ensure that the price implied by the pool corresponds to the true
value of the token

▶ Assume that these conditions hold in empirical analysis
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Data and Stylized Facts

▶ Decentralized exchanges (DEX) are smart contracts mostly deployed
on the Ethereum blockchain

▶ Users initiate trade as an Ethereum transaction that sends tokens to
a smart contract which calls a function to perform the exchange

▶ The smart contract then sends trade proceeds in the form of the
appropriate tokens back

▶ Since transactions on Ethereum are atomic, or in other words they
either execute completely or fail

▶ there is no settlement risk and users do not have to handover
custody of their digital assets to a third party

▶ the source code for many DEXs is public and users can verify that
the code is not fraudulent
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▶ Uniswap V1 was launched in November 2018, and the first pool is
ETH/MKR

▶ Uniswap V2 was launched on May 18, 2020
▶ The update allows direct trade of any ERC-20 token pairs and

includes Tether (USDT)
▶ V2 generates a moving average of past prices which other smart

contracts can use as a reference price or “oracle”
▶ Many other smart contracts use Uniswap as a price feed, in the same

way that traders in traditional financial markets use Bloomberg
▶ Uniswap has no designated operator, V1 pools cannot be deleted

from the blockchain and exist in parallel to V2 pools
▶ UniSwap liquidity pools are not certified, users should verify the

address to trade with the correct tokens
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▶ Our sample comprises 36,958 individual liquidity pools, consisting of
3,937 V1 pools and 33,021 V2 pools

▶ We matched transactions into and out of these liquidity pools with
block-by-block transactions on the Ethereum blockchain

▶ In total we have 47,204,920 transactions on Uniswap from its
inception on November 2, 2018 until May 20, 2021

▶ From the Ethereum blockchain we observe 1,084,581 liquidity
injections into a pool, 582,063 withdrawals of liquidity from a pool,
and 45,481,500 trades of tokens

▶ A Uniswap transaction is a set of instructions that are processed in
the same block

▶ We focus on the analysis on liquidity supply on both a limit order
market and an AMM. So we do not consider market access fees like
gas fees
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▶ Transactions are finalized if they are incorporated onto the
Ethereum blockchain, and anything that happens in the same block
effectively happens at the same time

▶ In our data, 56,606 transactions combine liquidity additions or
removals with swaps or flash swaps

▶ For liquidity providers flash swaps offer a risk free way to earn earn
higher fees

▶ Most pools trade against WETH. To compute volume we take the
WETH part of the trade and convert it to USD using Binance
minute by minute data
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Ten Largest Exchanges for Uniswap V1 and V2
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Number of transactions on Uniswap
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Trading Volume on Uniswap
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Network graph between all tokens of the 50 largest pools
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Liquidity Provision

▶ Suppose that 0 < τ < σ
p0

, then the equilibrium supply of Tokens is
given by

T0 = q[
√

1 +
(1 − α)2τ 2p2

0
α2ω2 − (1 − α)τp0

αω
]

where ω =
√

p0(p0 + σ)(1 + τ) +
√

p0(p0−σ)
1+τ − 2p0

▶ Empirically there is heterogeneity in pools
▶ We derive comparative statics for pool size. Suppose that τ < σ

p0
,

then the equilibrium size of a liquidity pool is
1. Linear in the size of the liquidity trade
2. Is decreasing in the size of the innovation, σ
3. Is decreasing in informed trades, α
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▶ To test these predictions, we collect daily data on all 1,376 pools in
our sample. For the average exchange, we observe 208 days, while
the median is 205

▶ In Table 2 we regress pool size on price volatility and measures of
uninformed trading
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▶ Rapid withdrawls of liquidity supply as we highlighted in our model
are a feature of modern limit order markets. Further, such
withdrawls have contributed to “flash crashes”

▶ By contrast, liquidity suppliers in Uniswap pools are very stable
▶ In as much as deep and constant liquidity is socially beneficial, the

design of the AMM is effective
▶ Ethereum gas fees act as a commitment device for liquidity suppliers

to remain in pools
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Ranking Exchanges

▶ To compare the limit order market with an automated market maker
we focus on the total trading cost for a liquidity trader, which
consist of fees and price impact

▶ Each liquidity supplier has undertaken private investment and is a
monopolist with probability γ∗(1 − γ∗)

▶ The liquidity trader thus faces a monopolist with probability
2γ∗(1 − γ∗), which we denote by η and enjoys competitive liquidity
provision with probability 1 − η

▶ The expected cost to the liquidity trader is

E(climit) = (1 − η)(ασ +
α

(1 − α)2 Γ(α, σ)) + ησ,

where Γ(α, σ) = σ[1 − α2 + 2α ln(α)]
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▶ The expected cost to the liquidity trader is

E(climit) = (1 − η)(ασ +
α

(1 − α)2 Γ(α, σ)) + ησ,

where Γ(α, σ) = σ[1 − α2 + 2α ln(α)]

▶ In the AMM, the expected cost to the liquidity trader is

E(cAMM) = p0(1 + τ)(
λb + λs

2 )− p0,

where λb > 1 and λs > 1 are constants
▶ The limit order market does not dominate the AMM

1. There are robust parameter ranges for which the automated
market maker dominates the limit order market

2. Conditional on trading quantity q, for a pool in equilibrium,
price impact is more volatile in the limit order market than the
AMM
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▶ The left panel shows that automated market makers are the better
trading venue for the liquidity trader when either the innovation in
prices or the intensity of informed trading are sufficiently small

▶ The right panel shows that for a given intensity of informed trading
liquidity pools dominate when the trade size of the liquidity trader is
neither too small, because then the fee revenue would be too small,
nor too large, because then the pool would grow to a size where it
can be picked off to much
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Empirical Analysis

▶ We end up with 27 token pairs that are cross listed and frequently
traded on Uniswap and Binance

▶ When the pool starts, as long as the pool size is below 100 ETH,
pricing errors are huge reaching over 40%

▶ This is not surprising as a small invariant k will cause a very steep
bonding curve

▶ Once the poolsize is above 700 ETH, the pricing difference stays
below 1% with an average of -0.026% for this pool
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USDC/ETH Pool Size and Pricing Error
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Determinants of price differences between Binance and
Uniswap

▶ We examine the absolute percentage pricing error defined as the
absolute value of the price differential between Binance and
Uniswap divided by the price on Binance

▶ Decreases in pool size and volume
▶ Increases in fx-volatility, gas price, and price impacts
▶ Non-monotonic in relative volume
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Price Impact of USDC/ETH on Uniswap (orange, green)
and Binance (blue)
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Trading Volume of USDC/ETH on Uniswap (orange) and
Binance (blue)

▶ Remarkably correlated across the two markets
▶ Uniswap is gaining market share over time
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Intraday Prices for the USDC/ETH Pair on 10/21/2020

▶ Binance prices are often leading Uniswap prices
▶ Binance prices are more volatile that the prices on Uniswap
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Conclusion

▶ The Uniswap experiment does not merely increase the supply of
liquidity by relaxing market makers’ inventory constraints

▶ It also changes how the benefits and costs of liquidity provision are
shared among market participants

▶ Price impact in a limit order market is the endogenous outcome of
the interaction between liquidity demand and supply, while on an
AMM the price impact is programmatically determined by a
bonding curve

▶ Liquidity suppliers trade off potential adverse selection against fee
revenue to adjust the equilibrium pool size

▶ Uniswap V3 will give liquidity suppliers partial ability to associate
their liquidity to price ranges

▶ This change re-introduces competition between liquidity suppliers,
which may drive out non-strategic liquidity suppliers
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Comments
▶ I have learned how AMM works, interesting data of Uniswap and

Binance, and the framework to compare different trading rules
▶ This paper ranks limit order market maker and AMM based on the

total trading cost of liquidity trader, while the trading cost of limit
order market depends on the parameters of private investment,
which are not relevant to the AMM. The change of these parameters
may alter the half-and-half result of limit order market v.s. AMM

▶ Technically, when the market maker is monopolistic, they can set a
price even higher than p + σ to gain more profits

▶ What if we change the ranking criterion such as including the cost
to build centralized exchanges or decentralized blockchains? Then
which system is socially optimal under what conditions?

▶ This paper is about the differences between limit order market and
AMM, but does not directly touch the notion of decentralization
since an AMM can be organized by a centralized exchange as well.
How to model the value of decentralization, such as self-custody
and being permissionless?


