Partial Identification of Structural Models

Francesca Molinari

Presented by Qihong Ruan

Nov 26, 2019

3.1 Discrete Choice in Single Agent Random Utility Model

- $ightharpoonup \mathcal{I}$: a population of decision makers
- $\mathcal{Y} = \{c_1, ..., c_{|\mathcal{Y}|}\}$: a set of finite potential alternatives (feasible set)
- \triangleright \in *: is chosen from

$$\mathbb{P}(c \in^* C) = \mathbb{P}(\pi_i(c) \geq \pi_i(b) \, \forall b \in C)$$

for all $c \in C$, $C \subset Y$, $i \in I$. π_i is a random utility function.

Example:

$$\pi_{ij} = \beta x_{ij} + \epsilon_{ij}$$

i indexes decision makers, j indexes alternatives, x_{ij} is a vector of observed variables relating to alternative j for person i.

$$\mathbb{P}_{ij} = \mathbb{P}(y_{ij} = 1) = \mathbb{P}(\pi_{ij} \ge \pi_{ik} \, \forall k \ne j)$$
$$= \mathbb{P}(\epsilon_{ik} - \epsilon_{ij} \le \beta x_{ij} - \beta x_{ik} \, \forall k \ne j)$$

3.1.1 Semiparametric Binary Choice Models with Interval Valued Covariates

Identification Problem 3.1

- ▶ Observe (y, x_L, x_U, w) in $\{0, 1\} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d$, $d < \infty$
- $\triangleright x \in \mathbb{R}$ is unobservable
- $ightharpoonup y = 1(w\theta + \delta x + \epsilon > 0)$, ϵ is continuous conditional on (w, x, x_L, x_U)
- ▶ Suppose $\delta > 0$, normalize $\delta = 1$
- ▶ R is the joint distribution function of $(y, x, x_L, x_U, w, \epsilon)$
 - $ightharpoonup R(x_L \le x \le x_U) = 1$
 - $ightharpoonup R(\epsilon|w,x,x_L,x_U) = R(\epsilon|w,x)$
 - $ightharpoonup R(\epsilon \le 0|w,x) = \alpha$

Problem:

Observe (y, x_L, x_U, w) , x is unobservable, $y = 1(w\theta + x + \epsilon > 0)$. What can we learn about θ ?

Observe (y, x_L, x_U, w) , x is unobservable, $y = 1(w\theta + x + \epsilon > 0)$. What can we learn about θ ?

$$y = 1 \Rightarrow \epsilon > -w\theta - x_U$$
$$y = 0 \Rightarrow \epsilon \le -w\theta - x_L$$
$$-w\theta - x_U \le -w\theta - x_L$$

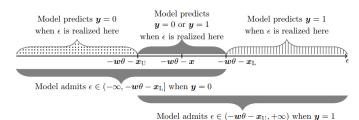


Figure 3.1: Predicted value of y as a function of ϵ , and admissible values of ϵ for each realization of y, in Identification Problem 3.1, conditional on $(w, x_{\rm L}, x_{\rm U})$.

Note: when x is observed, the prediction is unique.

Why does this set-valued prediction hinder point estimation?

$$P(y = 1|w, x_L, x_U) = \int R(y = 1|w, x, x_L, x_U) dR(x|w, x_L, x_U)$$
$$= \int R(\epsilon > -w\theta - x|w, x) dR(x|w, x_L, x_U)$$

The first equation uses the Law of Iterated Expectation; the second equation uses the assumption that $R(\epsilon|w,x,x_L,x_U) = R(\epsilon|w,x)$.

- Since $R(x|w,x_L,x_U)$ is unspecified, we can find multiple values for θ satisfying the assumptions in Identification Problem 3.1 and yielding the observed value of $P(y=1|w,x_L,x_U)$
- ▶ However, not all $\theta \in \Theta$ can be paired with some R
- ightharpoonup Thus, θ is partially identified

THEOREM SIR-3.1: The sharp identification region for θ

Under the Assumptions of Identification Problem Problem 3.1, the sharp identification region for θ is

$$\mathcal{H}_{P}[\theta] = \{ \vartheta \in \Theta : P((w, x_{L}, x_{U}) : \{ 0 \le w\vartheta + x_{L} \cap P(y = 1 | w, x_{L}, x_{U}) \le 1 - \alpha \} \\ \cup \{ w\vartheta + x_{U} \le 0 \cap P(y = 1 | w, x_{L}, x_{U}) \ge 1 - \alpha \}) = 0 \}. (3.1)$$

Proof. The set of possible values for ϵ given (y, w, x_L, x_U) is

$$\mathcal{E}_{\theta}(y) \equiv \mathcal{E}_{\theta}(y, w, x_L, x_U) = \begin{cases} (-\infty, -w\theta - x_L] & \text{if } y = 0, \\ [-w\theta - x_U, +\infty) & \text{if } y = 1. \end{cases}$$

If the model is correctly specified,

$$(\epsilon, w, x_L, x_U) \in (\mathcal{E}_{\theta}(y), w, x_L, x_U)$$

Molchanov and Molinari (2018) show that $(\epsilon, w, x_L, x_U) \in (\mathcal{E}_{\theta}(y), w, x_L, x_U)$ occurs if and only if

$$\mathsf{R}(\epsilon \in C|w,x_L,x_U) \geq \mathsf{P}(\mathcal{E}_{\theta}(y) \subset C|w,x_L,x_U) \ \forall C \in \mathsf{F},$$

where F denotes the collection of closed subsets of \mathbb{R} .

Using the Law of Iterated Expectation,

$$\int \mathsf{R}(\epsilon \in C|w,x,x_L,x_U) d\mathsf{R}(x|w,x_L,x_U) \geq \mathsf{P}(\mathcal{E}_{\theta}(y) \subset C|w,x_L,x_U)$$

▶ Using $R(\epsilon|w, x, x_L, x_U) = R(\epsilon|w, x)$,

$$\int \mathsf{R}(\epsilon \in C|w,x) d\mathsf{R}(x|w,x_L,x_U) \geq \mathsf{P}(\mathcal{E}_{\theta}(y) \subset C|w,x_L,x_U)$$

▶ Recall the assumption $R(\epsilon \le 0|w,x) = \alpha$. Let $C = (-\infty,0]$, then

$$\alpha \geq \mathsf{P}(\mathcal{E}_{\theta}(y) \subset (-\infty, 0] | w, x_L, x_U)$$

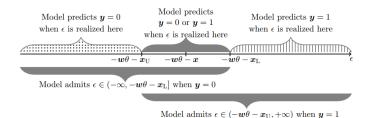


Figure 3.1: Predicted value of y as a function of ϵ , and admissible values of ϵ for each realization of y, in Identification Problem 3.1, conditional on $(w, x_{\rm L}, x_{\rm U})$.

$$\alpha \ge P(\mathcal{E}_{\theta}(y) \subset (-\infty, 0] | w, x_L, x_U)$$

$$= P(y = 0 \cap -w\theta - x_L \le 0 | w, x_L, x_U)$$

$$= P(y = 0 \cap w\theta + x_L \ge 0 | w, x_L, x_U)$$

$$\alpha \ge P(y = 0 | w, x_L, x_U) \quad \forall (w, x_L, x_U) \text{ such that } w\theta + x_L \ge 0$$

 $1 - \alpha \le 1 - \mathsf{P}(y = 0 | w, x_L, x_U) \ \forall (w, x_L, x_U) \ \text{such that } w\theta + x_L \ge 0$ $= \mathsf{P}(y = 1 | w, x_L, x_U) \ \forall (w, x_L, x_U) \ \text{such that } w\theta + x_L \ge 0$

Use $\int R(\epsilon \in C|w,x)dR(x|w,x_L,x_U) \geq P(\mathcal{E}_{\theta}(y) \subset C|w,x_L,x_U)$ and $R(\epsilon \leq 0|w,x) = \alpha$ again, let $C = [0,+\infty)$, we have

$$1 - \alpha \ge \mathsf{P}(\mathcal{E}_{\theta}(y) \subset [0, +\infty) | w, x_L, x_U)$$

= $\mathsf{P}(y = 1 \cap -w\theta - x_U \ge 0 | w, x_L, x_U)$
= $\mathsf{P}(y = 1 \cap w\theta + x_U \le 0 | w, x_L, x_U)$

$$1-\alpha \geq \mathsf{P} \big(y=1|w,x_L,x_U\big) \; \forall \big(w,x_L,x_U\big) \; \text{such that} \; w\theta + x_U \leq 0.$$
 (3.2)

$$1 - \alpha \le \mathsf{P}(y = 1 | w, x_L, x_U) \ \forall (w, x_L, x_U) \ \mathsf{such that} \ w\theta + x_L \ge 0. \ (3.3)$$

Any given $\vartheta \in \Theta$, $\vartheta \neq \theta$, violates (3.2) or (3.3) if and only if

$$P((w, x_L, x_U) : \{0 \le w\vartheta + x_L \cap P(y = 1 | w, x_L, x_U) < 1 - \alpha\}$$

$$\cup \{w\vartheta + x_U \le 0 \cap P(y = 1 | w, x_L, x_U) > 1 - \alpha\}) > 0$$

Notice that when $w\vartheta + x_U > 0$ and $w\vartheta + x_L < 0$, i.e., $-x_U < w\vartheta < -x_L$, ϑ does not violate (3.2) or (3.3), thus ϑ is not distinguishable from θ .

Identification Problem 3.2: Parametric Regression with Interval Covariate Data

- ▶ Observe $(y, x_L, x_U, w) \sim P$ in $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^d$, $d < \infty$
- $\triangleright x \in \mathbb{R}$ is unobservable
- ▶ R is the joint distribution of (y, x, x_L, x_U) . $R(x_L \le x \le x_U) = 1$; $\mathbb{E}_R(y|w, x, x_L, x_U) = \mathbb{E}_Q(y|w, x)$
- $ightharpoonup \mathbb{E}_{Q}(y|w,x)=f(w,x;\theta)$; f is known and weakly increasing in x

Problem: What can we learn about θ ?

The sharp identification region for θ is

$$\mathcal{H}_{\mathsf{P}}[\theta] = \{ \vartheta \in \Theta : f(w, x_L; \vartheta) \le \mathbb{E}_{\mathsf{P}}(y|w, x_L, x_U) \le f(w, x_U; \vartheta) \} \quad (3.8)$$

▶ Proof. (Following the proof of Theorem SIR-2.4)

$$\mathbb{E}_{P}(y|w,x_{L},x_{U}) = \int \mathbb{E}_{R}(y|w,x,x_{L},x_{U})dR(x|w,x_{L},x_{U})$$
$$= \int \mathbb{E}_{Q}(y|w,x)dR(x|w,x_{L},x_{U})$$
$$= \int f(w,x;\theta)dR(x|w,x_{L},x_{U})$$

Here we use the Law of Iterated Expectation, $\mathbb{E}_{R}(y|w,x,x_{L},x_{U}) = \mathbb{E}_{Q}(y|w,x)$, and $\mathbb{E}_{Q}(y|w,x) = f(w,x;\theta)$.

- ► Since f is weakly increasing in x, and $x_L < x < x_U$, $f(w, x_L; \theta) \le \int f(w, x; \theta) dR(x|w, x_L, x_U) \le f(w, x_U; \theta)$
- ▶ When $f(w, x_L; \vartheta) \leq \mathbb{E}_{P}(y|w, x_L, x_U) \leq f(w, x_U; \vartheta)$, ϑ is observationally equivalent to θ

3.1.2 Endogenous Explanatory Variables

Identification Problem 3.3 (Discrete Choice with Endogenous Explanatory Variables)

- ▶ Observe random variables $(y, x, z) \sim P$ in $\mathcal{Y} \times \mathcal{X} \times \mathcal{Z}$
- $\mathbf{v} \equiv (\epsilon_{c_1}, ..., \epsilon_{c_{|\mathcal{Y}|}}), \ \mathbf{v} \perp \mathbf{z}, \ \mathbf{v} \sim \mathbf{Q}, \ \mathbf{Q} \in \mathcal{T}, \ \mathcal{T}$ is a specified family of distributions
- ▶ The conditional distribution S(v|x,z) is continuous on (x,z)
- The utility function $\pi_i(c) = g(\mathbf{x}_c; \delta) + \epsilon_c$, g is known, $\delta \in \Delta \subset \mathbb{R}^m$, $\forall c \in \mathcal{Y}$
- Normalize $g(\mathbf{x}_{c_{|\mathcal{Y}|}}; \delta) = 0$
- Given $(\mathbf{x}, \mathbf{z}, v)$, suppose \mathbf{y} is the utility maximizing choice in \mathcal{Y} , what can we learn about (δ, \mathbf{Q}) ?

▶ For any $c \in \mathcal{Y}$ and $x \in \mathcal{X}$, c is chosen if and only if v realizes in the set

$$\mathcal{E}_{\delta}(c,x) = \{ e \in \mathcal{V} : g(x_c; \delta) + e_c \ge g(x_d; \delta) + e_d \ \forall d \in \mathcal{Y} \}$$

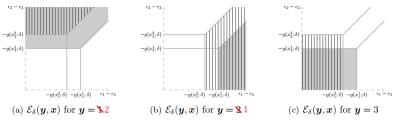
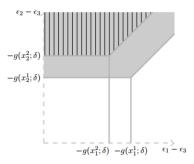


Figure 3.2: The set \mathcal{E}_{δ} in equation (3.9) and the corresponding admissible values for $(\boldsymbol{y}, \boldsymbol{x})$ as a function of $(\epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3)$ under the simplifying assumption that $\mathcal{X} = \{x^1, x^2\}$ and $\mathcal{Y} = \{1, 2, 3\}$. The admissible values for $(\boldsymbol{y}, \boldsymbol{x})$ are $\{(c, x^1)\}$ in the gray area, and $\{(c, x^2)\}$ in the area with vertical lines. Because the two areas overlap, the model has set-valued predictions for $(\boldsymbol{y}, \boldsymbol{x})$.

Figure 3.2 plots the set $\mathcal{E}_{\delta}(\mathbf{y},\mathbf{x})$ when $\mathcal{Y}=\{1,2,3\}$ and $\mathcal{X}=\{x^1,x^2\}$, as a function of $(\epsilon_1-\epsilon_3,\epsilon_2-\epsilon_3)$



(a)
$$\mathcal{E}_{\delta}(\boldsymbol{y}, \boldsymbol{x})$$
 for $\boldsymbol{y} = \mathbb{N}2$

$$\mathbf{y} = 2 \iff g(x_2; \delta) + \epsilon_2 \ge g(x_1; \delta) + \epsilon_1, \ g(x_2; \delta) + \epsilon_2 \ge \epsilon_3$$

$$\iff \epsilon_1 - \epsilon_2 = (\epsilon_1 - \epsilon_3) - (\epsilon_2 - \epsilon_3) \le g(x_2; \delta) - g(x_1; \delta), \ \epsilon_2 - \epsilon_3 \ge - g(x_2; \delta)$$

$$\iff \epsilon_2 - \epsilon_3 \ge - g(x_2; \delta) + g(x_1; \delta) + (\epsilon_1 - \epsilon_3), \ \epsilon_2 - \epsilon_3 \ge - g(x_2; \delta)$$

When **x** changes from x^1 to x^2 , the region changes. In this case, $g(x_1^2; \delta) > g(x_1^1; \delta)$, $g(x_2^2; \delta) < g(x_2^1; \delta)$, and $g(x_3^1; \delta) = g(x_3^2; \delta) = 0$

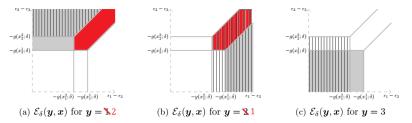


Figure 3.2: The set \mathcal{E}_{δ} in equation (3.9) and the corresponding admissible values for $(\boldsymbol{y}, \boldsymbol{x})$ as a function of $(\epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3)$ under the simplifying assumption that $\mathcal{X} = \{x^1, x^2\}$ and $\mathcal{Y} = \{1, 2, 3\}$. The admissible values for $(\boldsymbol{y}, \boldsymbol{x})$ are $\{(c, x^1)\}$ in the gray area, and $\{(c, x^2)\}$ in the area with vertical lines. Because the two areas overlap, the model has set-valued predictions for $(\boldsymbol{y}, \boldsymbol{x})$.

▶ When v is realized at the red area, we have two possible (x, y):

$$(x^1, 2), (x^2, 1)$$

Recall that in Problem 3.1, the model predicts y = 0 or y = 1 for some ϵ , and hence partial identification results

Compared with Identification Problem 3.1

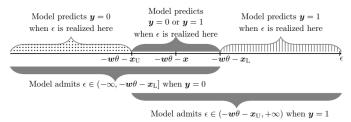


Figure 3.1: Predicted value of y as a function of ϵ , and admissible values of ϵ for each realization of y, in Identification Problem 3.1, conditional on (w, x_L, x_U) .

- ▶ Problem 3.1: Model predicts multiple values of **y** for some ϵ
- ▶ Problem 3.3: Model predicts multiple values of (\mathbf{x}, \mathbf{y}) for some ϵ
- ► The set-valued prediction results in partial identification of parameters of interest

The Sharp Identification Region for (δ, Q)

$$P(\mathcal{E}_{\delta}(\mathbf{y}, \mathbf{x}) \subseteq F | \mathbf{z}) = \sum_{c \in \mathcal{Y}} \mathbf{1}(\mathcal{E}_{\delta}(c, \mathbf{x}) \subseteq F) \cdot P(\mathbf{y} = c | \mathbf{z})$$

$$= \int_{x \in \mathcal{X}} \sum_{c \in \mathcal{Y}} \mathbf{1}(\mathcal{E}_{\delta}(c, x) \subseteq F) \cdot P(\mathbf{y} = c | \mathbf{x} = x, \mathbf{z}) dP(x | \mathbf{z})$$

For given $F \in \mathcal{F}$ and $\delta \in \Delta^m$. \mathcal{F} is the collection of closed subsets of \mathcal{V} , and \mathcal{V} is the sample space of $v \equiv (\epsilon_{c_1}, ..., \epsilon_{c_{|\mathcal{Y}|}})$.

- \triangleright This probability can be learned from the observed data (x, y, z)
- ▶ Under the assumptions of Identification Problem Problem 3.3, the sharp identification region for (δ, Q) is

$$\mathcal{H}_{\mathsf{P}}[\delta,\mathsf{Q}] = \{\delta \in \Delta, \mathsf{Q} \in \mathcal{T} : \mathsf{Q}(F) \ge \mathsf{P}(\mathcal{E}_{\delta}(\mathbf{y},\mathbf{x}) \subseteq F|\mathbf{z}), \ \forall F \in \mathcal{F}\}$$
(3.13)

Theorem SIR-3.3 (Discrete Choice with Endogenous Explanatory Variables)

Under the assumptions of Identification Problem Problem 3.3, the sharp identification region for (δ, Q) is

$$\mathcal{H}_{\mathsf{P}}[\delta,\mathsf{Q}] = \{ \delta \in \Delta, \mathsf{Q} \in \mathcal{T} : \mathsf{Q}(F) \ge \mathsf{P}(\mathcal{E}_{\delta}(\mathbf{y},\mathbf{x}) \subseteq F|\mathbf{z}), \ \forall F \in \mathcal{F} \}$$
(3.13)

Proof.

Notation: $\mathcal{E}_{\delta} \equiv \mathcal{E}_{\delta}(\mathbf{y}, \mathbf{x}), \ (\mathcal{E}_{\delta}, \mathbf{x}, \mathbf{z}) = \{(\mathbf{e}, \mathbf{x}, \mathbf{z}) : \mathbf{e} \in \mathcal{E}_{\delta}\}.$

- $(v, \mathbf{x}, \mathbf{z}) \in (\mathcal{E}_{\delta}, \mathbf{x}, \mathbf{z})$ for the data generating value of (δ, Q) as long as the model is correctly specified
- ▶ By Theorem A.1 and Theorem 2.33 in Molchanov and Molinari (2018), this occurs if and only if

$$S(F|\mathbf{x}, \mathbf{z}) \geq P(\mathcal{E}_{\delta}(\mathbf{y}, \mathbf{x}) \subseteq F|\mathbf{x}, \mathbf{z}), \ \forall F \in \mathcal{F}$$

Integrate \mathbf{x} out at both sides, and use the fact that Q does not depend on \mathbf{z} , we have $Q(F) \geq P(\mathcal{E}_{\delta}(\mathbf{y}, \mathbf{x}) \subseteq F|\mathbf{z})$

Why does partial identification result?

$$\mathsf{M}(c|\mathbf{x} \in R_z, \mathbf{z} = z; \delta) = \int_{x \in R_z} \mathsf{S}(\mathcal{E}_{\delta}(c, \mathbf{x})|\mathbf{x} = x, \mathbf{z} = z) d\mathsf{P}(x|z), \ \forall R_z \subseteq \mathcal{X}$$
(3.10)

$$Q(F) = \int_{x \in \mathcal{X}} S(F|\mathbf{x} = x, \mathbf{z} = z) dP(x|z), \ \forall F \subseteq \mathcal{V}$$
(3.11)

- ► The joint distribution of (\mathbf{x}, v) conditional on z is left completely unrestricted (except for (3.11), we can find multiple (δ, Q, S) satisfying the maintained assumptions and such that $M(c|\mathbf{x} \in R_z, \mathbf{z} = z; \delta) = P(c|\mathbf{x} \in R_z, \mathbf{z} = z) \ \forall c \in \mathcal{Y} \ \text{and} \ R_z \subset \mathcal{X}$
- ▶ McFadden's 1973 conditional logit model yields point identification of δ when $\mathbf{x} \perp v$
- ▶ When **x** is endogenous, $S(v|\mathbf{x},\mathbf{z})$ may change across realizations of **x**
- For given realization of v, the model admits sets of values for endogenous variables (y, x), partial identification results

Insights: Models with Endogenous Variables as Incomplete Models

- ► Chesher, Rosen, and Smolinski (2013) show that one can frame models with endogenous explanatory variables as incomplete models
- ► Incompleteness here results from the fact that the model does not specify how the endogenous variables **x** are determined
- One can then think of these as models with set-valued predictions for the endogenous variables
- ► Random set theory can again be leveraged to characterize sharp identification regions

Insights: Point and Partial Identification

Manski (1985): When (y, w, x) is observed,

$$w\theta + x > 0 \Leftrightarrow P(y = 1|w,x) > 1 - \alpha$$

using
$$y \equiv 1(w\theta + x + \epsilon > 0)$$
 and $R(\epsilon \le 0|w,x) \equiv \alpha$.

► Hence, θ is identified relative to θ ∈ Θ if

$$P((w,x): \{w\theta + x \le 0 < w\theta + x\} \cup \{w\theta + x \le 0 < w\theta + x\}) > 0.$$
(3.4)

Manski and Tamer (2002): When x is unobserved, but $x \in [x_L, x_U]$, the collection of values that cannot be distinguished from θ is

$$\{\vartheta \in \Theta : \mathsf{P}((w, x_L, x_U) : \{w\theta + x_U \le 0 < w\vartheta + x_L\} \cup \{w\vartheta + x_U \le 0 < w\theta + x_L\}) = 0\}. \quad (3.5)$$

 The reasoning of point identification can be extended to partial identification

Introduce the Instrument Variable

- Magnac and Maurin (2008) assume that an instrumental variable z is available
 - $ightharpoonup \epsilon$ is independent of x conditional on (w,z), and $Corr(z,\epsilon)=0$
 - \triangleright x is continuous with support $[v_1, v_k]$
 - ▶ $\mathbb{P}[x \in [v_i, v_{i+1})|w, z] > 0 \ \forall \ i = 1, ..., k-1$
- ▶ If x were observed, follow Lewbel (2000), let

$$\tilde{y} = \frac{y - 1_{x>0}}{f_x(x|w,z)}$$

then

$$\theta = \mathbb{E}_{\mathsf{P}}(zw^{\mathsf{T}})^{-1}\mathbb{E}_{\mathsf{P}}(z\tilde{y}) \tag{3.6}$$

▶ If x are interval valued, let x^* takes value $i \in 1,...,k-1$ if $x \in [v_i,v_{i+1}), \, \delta(x^*) = v_{x^*+1} - v_{x^*}, \, y^* = \frac{\delta(x^*)}{P(x^*=i|w,z)}y - v_k$, then the sharp identification region for θ is

$$\mathcal{H}_{\mathsf{P}}[\theta] = \mathbb{E}_{\mathsf{P}}(zw^{\mathsf{T}})^{-1}\mathbb{E}_{\mathsf{P}}(zy^* + zU) \tag{3.7}$$

