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3.1 Discrete Choice in Single Agent Random Utility Model

» 7: a population of decision makers

> Y ={c1,...,Cy|}: a set of finite potential alternatives (feasible set)

» c<*: is chosen from

P(c €* C) =P(mi(c) > mi(b)Vb € C)

forallce C, CCY,i€l. misarandom utility function.
» Example:
Tij = Bxj + €

i indexes decision makers, j indexes alternatives, x;j; is a vector of
observed variables relating to alternative j for person i.

Py =P(y; = 1) = P(m; > 7 Yk # j)

=P(eix — €5 < Bxij — Bxik Yk # J)



3.1.1 Semiparametric Binary Choice Models with Interval
Valued Covariates

Identification Problem 3.1

» Observe (y,x;,xy,w) in {0,1} x Rx R x RY, d < o0

> x € R is unobservable

» y =1(wh+0x+e€ > 0), €is continuous conditional on (w, x, x, xy)
» Suppose d > 0, normalize 6 =1
>

R is the joint distribution function of (y, x, x., xy, w, €)

> R(x, <x<xy)=1
> R(e|lw, x, x, xy) = R(e|lw, x)
> R(e <0jw,x) =«

Problem:
Observe (y, x, xy, w), x is unobservable, y = 1(wf + x + ¢ > 0). What
can we learn about 67



Observe (y, xi, xy, w), x is unobservable, y = 1(wf + x + ¢ > 0). What
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y=1l=e>—wbl—xy

y=0=e< —wh—x_

—wh — xy < —whl — x;.

Model predicts
y=0ory=1

Model predicts y = 0
when € is realized here

Model predicts y = 1
when e is realized here

when ¢ is realized here
---R*Aﬂmmmum T
€

—wb —xy —wh —x —wf — x,

Model admits € € (—oo, —wf — @] when y =0
Model admits € € (—wf — xy, +0c) when y =1

Figure 3.1: Predicted value of y as a function of €, and admissible values of € for each realization of
y, in Identification Problem 3.1, conditional on (w,zr, zy).

Note: when x is observed, the prediction is unique.



Why does this set-valued prediction hinder point
estimation?

P(y = 1w, x.,xy) = /R(y = 1|w, x, x, xu)dR(x|w, x., xy)
= /R(e > —wh — x|w, x)dR(x|w, x, xu)
The first equation uses the Law of Iterated Expectation; the second

equation uses the assumption that R(e|w, x, x;, xy) = R(e|w, x).

» Since R(x|w, x¢, xy) is unspecified, we can find multiple values for 8
satisfying the assumptions in ldentification Problem 3.1 and yielding
the observed value of P(y = 1|w, x;, xy)

» However, not all # € © can be paired with some R

» Thus, 0 is partially identified



THEOREM SIR-3.1: The sharp identification region for 6

Under the Assumptions of Identification Problem Problem 3.1, the sharp
identification region for 6 is

Hp[0] = {9 €O :P((w,x1,xuv) : {0 <wd+x. NPy =1lw,x,xy) <1-—a}
U{wd+xy <0NP(y =1w,x,xy) >1—a})=0}.(3.1)

Proof. The set of possible values for € given (y, w, x., xy) is

(—o0,—wh — x;] ify=0,

E0ly) = Enly, w1, x0) = {[—Wa —xyi+o0) iy =1

If the model is correctly specified,

(67 WaXL7XU) S (59(}’), W7XL;XU)



Molchanov and Molinari (2018) show that
(e, w,x1, xu) € (Ea(y), w, x1, xy) occurs if and only if

R(G S C|W,X[_,Xu) > P(&g(y) C C|W,X[_,Xu) VC € F,

where F denotes the collection of closed subsets of R.

Using the Law of Iterated Expectation,
/R(e € Clw, x, x., xy)dR(x|w, x¢, xy) > P(Ep(y) C Clw, xr, xy)
Using R(elw, x, x., xu) = R(e|w, x),

/R(e € Clw, x)dR(x|w, x;, xy) > P(Ey(y) C Clw, x., xy)

Recall the assumption R(e < 0|w, x) = . Let C = (—o0, 0], then

a > P(&(y) C (—o0,0]|w, x, xy)



Model predicts
y=0ory=1
when € is realized here

Model predicts y =1

Model predicts y = 0
when € is realized here

when ¢ is realized here

IZU —wf - x 7’1‘10 — &L €
Model admits € € (—oo0, —wf — @] when y =0

Model admits € € (—wf — xy, +0c) when y =1
Figure 3.1: Predicted value of y as a function of €, and admissible values of € for each realization of
y, in Identification Problem 3.1, conditional on (w,zr,xzy).
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P(€(y) C (o0, 0]lw, xt, xu)
Py =0Nn—-wf — x, < 0w, xg,xy)
P(y =0Nnwé + x. > 0|w, x., xu)

a > P(y =0|w,x, xu) Y(w,xt,xy) such that wd +x, >0

1-—a<1-Ply=0|w,xy,xy) ¥(w,xy,xy) such that wé + x; >0
= P(y = 1w, x¢, xuy) ¥Y(w, x¢, xy) such that wé + x, >0



Use [R(e € Clw, x)dR(x|w, x¢,xu) > P(Es(y) C Clw,xi, xy) and
R(e < 0|lw, x) = « again, let C = [0, +00), we have

1—a>P(&(y) C[0,400)|w, x, xu)
=P(y=1Nn-wb — xy > 0w, x., xy)
=Py =1Nnwb + xy < 0w, x, xy)

‘1 —a > P(y = 1|lw, x., xu) ¥Y(w, x¢, xy) such that wd + xy < 0. (3.2)‘

‘ 1—a <Py =1w,x;,xu) V(w, x., xy) such that wf + x;, > 0. (3.3) ‘

Any given ¥ € ©, 9 # 6, violates (3.2) or (3.3) if and only if

P((w,xt, xu) : {0 <wd+x NPy = 1w, x, xy) <1—a}
U{wd +xy <0NP(y =1lw,x,xy) >1—a}) >0

Notice that when wi + xy > 0 and wi +x; <0, i.e., —xy < wi < —x,
¥ does not violate (3.2) or (3.3), thus ¥ is not distinguishable from 6.



|dentification Problem 3.2: Parametric Regression with
Interval Covariate Data

» Observe (y,x,,xy,w) ~PinRxRxRxR? d< oo
» x € R is unobservable

» R is the joint distribution of (y, x, x;, xy). R(x; < x<xy) =1,
ER(}/|W,X,X[_,XU) = EQ(y‘W’X)

» Eq(y|w,x) = f(w,x;0); fis known and weakly increasing in x

Problem: What can we learn about 67



The sharp identification region for 6 is

Hpl0] = {9 € ©: f(w,x;9) <Ep(y|w, x, xu) < f(w,xy; 9)}  (3.8)

» Proof. (Following the proof of Theorem SIR-2.4)
Ep(y|w, xi, xy) = /IER(y|W,x,XL,XU)dR(X|W,XL,XU)
:/EQ(y|W7X)dR(X|W,XL,Xu)
Z/f(W7X;9)dR(X|W,X[_,Xu)

Here we use the Law of lterated Expectation,
Er(y|w, x, xt, xu) = Eq(y|w, x), and Eq(y|w, x) = f(w, x; 6).

» Since f is weakly increasing in x, and x; < x < xy,
f(w,x1;0) < [ f(w,x; 0)dR(x|w, x¢, xy) < f(w, xy; 0)

» When f(w,x;;9) < Ep(y|w,x.,xu) < f(w,xy;9), 9 is
observationally equivalent to 6



3.1.2 Endogenous Explanatory Variables

Identification Problem 3.3 (Discrete Choice with Endogenous
Explanatory Variables)

>

>

Observe random variables (y,x,z) ~Pin Y x X x 2

v = (€q, ...,eCm), vilz v~Q, QeT,Tis a specified family of
distributions

» The conditional distribution S(v|x, z) is continuous on (x,z)

» The utility function 7;(c) = g(xc; ) + €c, g is known, 6 € A C R",

Vee)

> Normalize g(xc,,;0) =0

> Given (x,z,v), suppose y is the utility maximizing choice in ), what

can we learn about (4, Q)?



» Forany c € Y and x € X, c is chosen if and only if v realizes in the
set

Es(c,x)={e€V:g(x:d)+ e > g(x4:0) + eq Vd € YV}

@ —e e2—eg

B I
—g(z3:8) —g(c}:6) H —g(a}:8)
- wu;ﬂ ii ‘ WZM||
—g(z}8) ~glai;8) a-es —g(z1;8) —gla} a-e —g(z;6) —gla} a-e
(a) &(y.z) for y =12 (b) &(y, ) for y =21 () &(y, ) fory =3

Figure 3.2: The set & in equation (3.9) and the corresponding admissible values for (y,z) as a
function of (e; — €3, €2 — €3) under the simplifying assumption that X' = {z!,2?} and ¥ = {1,2,3}.
The admissible values for (y,z) are {(c,z')} in the gray area, and {(c,2?)} in the area with vertical

lines. Because the two areas overlap, the model has set-valued predictions for (y,x).

Figure 3.2 plots the set £5(y,x) when ) = {1,2,3} and X = {x!,x?}, as
a function of (61 — €3,€2 — 63)



€2 — €3

—g(x3;8)

—g(3:6)

—g(x3:8) —g(z}:d) €@1—€s

(a) E(y,x) for y =12

y=2 = g(x:d)+e>glxa;d)+e, ghaid)+ea>e
= e1—€ = (e1—€3)—(e2—e€3) < g(x0; 0)—g(x1;9), e2—e3 > —g(x2; )
< e —€3> —g(x;0)+g(x1;0) + (e1 — €3), €2 — 3 > —g(x2;9)

» When x changes from x! to x?, the region changes. In this case,
g(x3;0) > g(xi:6), g(>3:0) < g(x3:9), and g(>3:0) = g(x5;0) = 0
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Figure 3.2: The set & in equation (3.9) and the corresponding admissible values for (y,z) as a
function of (e; — €3, €2 — €3) under the simplifying assumption that X = {z!,2?} and Y = {1,2,3}.
The admissible values for (y, ) are {(c,z!)} in the gray area, and {(c,22)} in the area with vertical
lines. Because the two areas overlap, the model has set-valued predictions for (y,x).

» When v is realized at the red area, we have two possible (x,y):
(x%,2), (x3,1)

» Recall that in Problem 3.1, the model predicts y =0 or y = 1 for
some €, and hence partial identification results



Compared with ldentification Problem 3.1

Model predicts

y=Oory=1 Model predicts y = 1

Model predicts y = 0
when ¢ is realized here

—wl —xy —wl —x —wf — x,

Model admits € € (—oo0, —wf — @] when y =0

Model admits € € (—wf — 2y, +0o0) when y =1

Figure 3.1: Predicted value of y as a function of €, and admissible values of € for each realization of
y, in Identification Problem 3.1, conditional on (w,zr,xy).

» Problem 3.1: Model predicts multiple values of y for some ¢
» Problem 3.3: Model predicts multiple values of (x,y) for some ¢

» The set-valued prediction results in partial identification of
parameters of interest



The Sharp Identification Region for (6, Q)

P(Es(y.x) C Flz) = > 1(Es(c.x) € F) - P(y = clz)
cey

= / > 1(&s(c,x) € F) - P(y = clx = x,2)dP(x|2)
xXeEX cey

For given F € F and 6 € A™. F is the collection of closed subsets of V,
and V is the sample space of v = (e, .-, €y )-

» This probability can be learned from the observed data (x,y, z)

» Under the assumptions of Identification Problem Problem 3.3, the
sharp identification region for (4, Q) is

Hp[6,Q] = {0 € A, Q € T : Q(F) > P(&s(y,x) C Flz), VF € F}
(3.13)



Theorem SIR-3.3 (Discrete Choice with Endogenous
Explanatory Variables)

Under the assumptions of Identification Problem Problem 3.3, the sharp
identification region for (§,Q) is

Hpl0,Ql={0 € A, Qe T :Q(F)>P(&ly,x) C Flz), VF € F}

(3.13)
Proof.

Notation: & = &5(y, x), (E5,%x,2) = {(e,x,2) : e € &}

» (v,x,z) € (£5,x%,2) for the data generating value of (4, Q) as long
as the model is correctly specified

» By Theorem A.1 and Theorem 2.33 in Molchanov and Molinari
(2018), this occurs if and only if

S(Flx,z) = P(&(y, x) € Flx,z), VF € F

» Integrate x out at both sides, and use the fact that Q does not
depend on z, we have Q(F) > P(&5(y,x) C F|z)



Why does partial identification result?

M(clx € Ry z = 7,6) = / S(E5(c,x)x = x,z = 2)dP(x|2), ¥R, C X
xXER,
) (3.10)
Q(F) = / S(Flx = x,2 = 2)dP(x|z), YF C V (3.11)
xeX

» The joint distribution of (x, v) conditional on z is left completely
unrestricted (except for (3.11), we can find multiple (4, Q, S)
satisfying the maintained assumptions and such that
M(c|x € R;,z=2z;6) =P(c|x € R,,z=2z)Vce Y and R, C X

» McFadden's 1973 conditional logit model yields point identification
of § when x I v

» When x is endogenous, S(v|x,z) may change across realizations of x

» For given realization of v, the model admits sets of values for
endogenous variables (y, x), partial identification results



Insights: Models with Endogenous Variables as Incomplete
Models

» Chesher, Rosen, and Smolinski (2013) show that one can frame
models with endogenous explanatory variables as incomplete models

» Incompleteness here results from the fact that the model does not
specify how the endogenous variables x are determined

» One can then think of these as models with set-valued predictions
for the endogenous variables

» Random set theory can again be leveraged to characterize sharp
identification regions



Insights: Point and Partial Identification

» Manski (1985): When (y, w, x) is observed,
wl+x>0<Ply=1w,x)>1—-a
using y = 1(wf + x + € > 0) and R(e < 0w, x) = .
» Hence, 6 is identified relative to ¥ € © if

P((w,x) : {wh+x <0 < wid +x}U{wd +x <0< wl+x})>0.
(3.4)
» Manski and Tamer (2002): When x is unobserved, but x € [x;, xy],
the collection of values that cannot be distinguished from 6 is
{0 €0 :P((w,xt,xu) {wl + xy <0 < wi + x }U
{wd+xy <0< wb+x})=0} (3.5)

» The reasoning of point identification can be extended to partial
identification



Introduce the Instrument Variable

» Magnac and Maurin (2008) assume that an instrumental variable z
is available

» ¢ is independent of x conditional on (w, z), and Corr(z,e) =0
> x is continuous with support [vq, vi]
> Plx € [vi,vit1)|lw,z] >0V i=1,...k—1

> If x were observed, follow Lewbel (2000), let

oo y - 1x>0
Y7 fxlw. 2)
then
0 =Ep(zw ") 'Ep(z9) (3.6)

» If x are interval valued, let x* takes value i € 1,.... k — 1 if
-
X € [Viy Vig1), 0(X*) = Varp1 — Vs, y* = %y — Vg, then the

sharp identification region for 6 is

Hp[0] = Ep(zw ") 'Ep(2y* + zU) (3.7)



